Presenter Name: Prasanta Baidya Paper name: Adaption of Corundum Refractory lining Technology in Lime Dolomite Calcination plant and Major capital repair technique through top-down approach at SAIL-IISCO Steel Plant

	PRESENT AFFILIATION	Manager, Refractories Engineering Department, SAIL –ISP Steel Plant, Burnpur - 713325
	AREAS OF INTEREST	Materials Science, Refractories
	Education	Ceramic Technology (B.Tech., Government College of Engineering & Ceramic Technology, 2011) Metallurgical Engineering & Materials Science (M.Tech., Indian Institute of Technology, Bombay, 2014)
Experience	 Asahi India Glass Solution: Worked as Management Trainee at float glass production for approximate nine months. Steel Authority of India Ltd: Working since eight years in different shops starting from Refractory (Mag-Carbon) manufacturing to its application, SMS operation area including caster operation, currently looking after planning cell at Refractories department of SAIL-ISP. 	
Projects:	 LITHIUM IRON PHOSPHATE BASED CATHODE MATERIAL DEVELOPMENT FOR LI-ION CELL FABRICATION OF CONDUCTING POLYMER BASED THIN FILM AND IT'S IN-SITU STRESS MEASUREMENT FOR APPLICATION IN SUPERCAPACITOR REALIZATION AND APPLICATION OF SIZE DEPENDENT FEM-SIMULATION FOR DEEP DRAWING OF RECTANGULAR WORK PIECE VEGETARIAN THIN BONE CHINA BODY PREPARATION USING SYNTHETIC PHOSPHATE 	
Publication/ Patent	Title - Rectification of energy transport in nonlinear metamaterials via ratchets [2013] Journal Details - J. Phys. D: Appl. Phys.46(2013) 205102 (8pp)	

Adaption of Corundum Refractory lining Technology in Lime Dolomite Calcination plant and Major capital repair technique through top-down approach at SAIL-IISCO Steel Plant

> Presented by Prasanta Baidya

LDCP KILNS

SALIENT FEATURES OF KILN

Height and Cross section area of Kiln

Flowchart of Lime-Dolomite calcination

At SAIL-ISP Limestone and Dolomite are calcined in Dual shaft Kiln through Mix gas from Coke Oven and Blast furnace in cyclic method for better heat recovery during operation

Input Raw Materials

Limestone (CaCO3): CaO- 53-54%, MgO- 1-2%, Silica- 1.5% max

Dolomite [CaMq(CO3)2]: CaO- 28-30%, MgO- 20-21%, Silica- 1.5-4% max

Feed Size: 25-55 mm

02

2600 kcal/Nm³

Combustion Air & Fuel

Mixture of CO & BF Gas

Calorific Value approx.

Inlet Pressure – 70mBar

Boosted up to – 900mBar

03

Kiln Processing

Cyclic lance firing is done in both the shaft for better heat recovery

Final Product

74

Cooling air injected from the bottom of the kiln and Calcined Lime & Dolomite as a final product discharged from the feeder

Operation inside Shaft Kiln

Refractory lining inside kiln

Safety Lining

Mainly consists of Hysil insulation board, light weight alumina bricks and Medium duty fireclay bricks

Working Lining

Primarily high duty fireclay bricks and non-calcination zone and Magnesite bricks at calcination zone

Arch in crossover channel

Double arch present and they are based on Magnesite initially now changed to Corundum

Monolithic

Basic Mortar and High Alumina (90%) castables are used as per requirement

Key Problems

Frequent Red Spot at Cross over area

Red spots were often observed at crossover channel as filling bricks above the arch either got damaged or fallen inside the kiln

Û

Damage of Arch bricks

Inconsistency in quality of gas, choking of combustion system affects the arch (Magnesite) through frequent Thermal shock

High maintenance cost

Frequent damages attracts higher cost of repair as primarily high alumina castable is used

High breakdown time

Damage of Arch creates a bottle neck for smooth production so it's frequent repair increase the breakdown time, .

<u>r</u>

High Refractory Consumption

Parallelly it increases the consumption of refractory and adds on the Kg/TCS.

j Lj

Poor quality of lime & Dolomite

Due to damage of arch achieving optimum calcination temperature becomes tricky and resulted to poor quality of Lime &.Dolomite

Corundum as an alternative at Arch lining

Capital Repair Technique

Top Down approach

Linings are done without emptying the burden starting form the kiln top

Safety Precaution?

Tie rods are welded after completion of every segment and lowering down the burden as per requirement

How it is done?

Step by step process through segmented lining with the help of retainer plate (Approximate in every fifteen layers)

Cost and Time benefit

Almost 90% safety lining as well as alumina working lining becomes reusable and drastically reduce the downtime

3

4

Objectives Powerpoint Template

10

Key Takeaway

About Corundum

 \bigcirc

Corundum as refractory is highly stable and contribute less intrinsic compound formation.

Cost effectivity of Corundum

مهم

Corundum is highly cost effective and suitable for refractory application where application condition is harsh

Adaptive lining technique

θĵθ

Top Down lining technique is very much effective from time and cost both point of view

3

Cost and Time saving technique

(\$)

This type of lining technique helps to achieve highest reusability of old bricks and also ensure minimum time frame for capital repair

Safety Perspective

All these changes are made by ensuring highest quantum of safety

5

