Presenter Name: BASANTA KUMAR SINHAMAHAPATRA Paper name: **Development of a New Refractory Repair Technology in Hot Blast Stove in pressurized condition at SAIL-IISCO Steel Plant**

	PRESENT AFFILIATION	SAIL-IISCO STEEL PLANT
	AREAS OF INTEREST	PERFORMANCE OF CERAMICS
	Education	B TECH (CERAMIC)
Experience	PRODUCT DEVELOPMENT, REFRACTORY MAINTENANCE IN STEEL PLANT, PROJECT MANAGEMENT, ERECTION AND COMMISSIONING, PLANNING & PROCUREMENT OF REFRACTORY MATERIALS, TROUBLE SHOOTING AND PROBLEM SOLVING IN REFRACTORY DESIGN AND APPLICATION	
Projects:		
Publication/ Patent	Patent 1. Microstructure of refractory castables prepared with sol-gel additives. <i>Ceramics International, Volume 29, Issue 6, 2003, Pages 677, 677.</i>	
	precipitation and sol-	d refractory castable in relation to co- gel derived spinel-forming agents. <i>Ceramics</i> <i>29, Issue 8, 2003, Pages 857-868</i> .

सेल SAIL

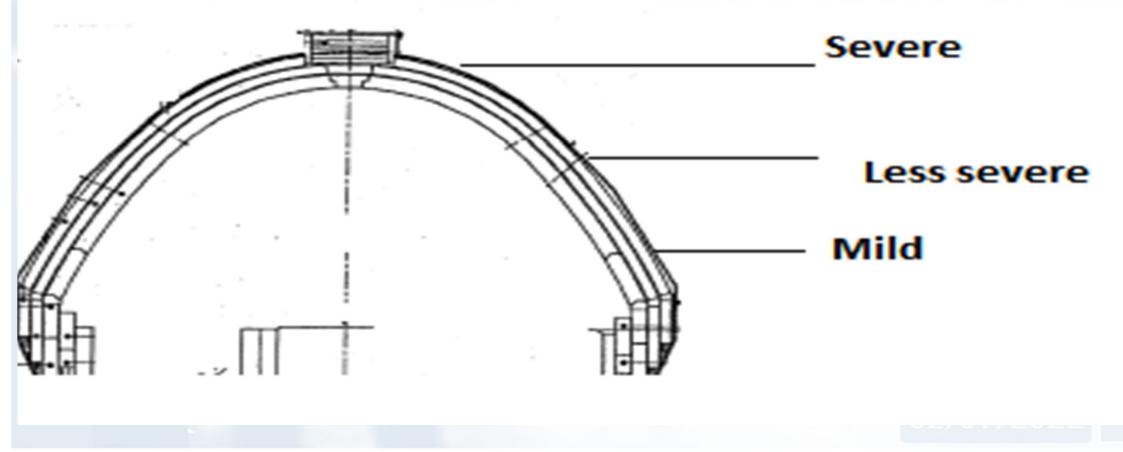
Development of a New Refractory Repair Technology in Hot Blast Stove in pressurized condition at SAIL-IISCO Steel Plant

B K Sinhamahapatra Tarun Misra, V K Rai M. Bose C. L. Gaikwad Shauvik Roy

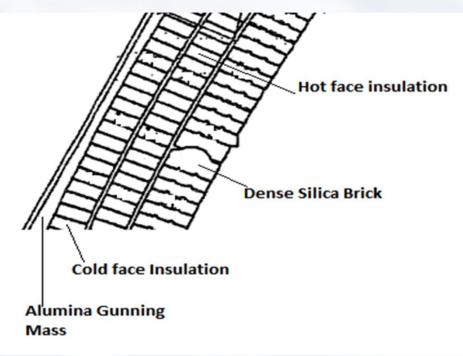
12:08 2/07/2022

INTRODUCTION

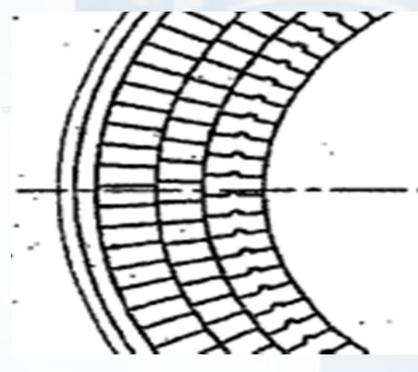
SAIL-ISP has single blast furnace of volume 4160 m3 with following provisions for hot blast:


Nos. of operating stoves		3
Operating mode		Standard operation 2 on gas / 1 on blast, cyclic
Maximum dome temperature	:	1450° C (Operating)
Maximum hot blast temperature	:	1250°C (Max), 1200°C (avg.)
Cold blast pressure at blower outlet	:	5.2 Kg/Cm2(g)
Blast Pressure at bustle pipe	:	4.6 Kg/cm2 (Max.)
Cold blast temperature	:	180° C, 240 ° C (Max.)
Shell Total Heights :	:	48 m
Checker refractory total Heights :	:	37.5 m

INTRODUCTION


- The stove were commissioned in November, 2014 along with the furnace,
- Within 4 years of operations, development of hot spots on shell of stove dome started. Nos. of hot spots gradually increased with the passage of time and domes of all the stoves, hot blast main and bustle main were affected.
- Shell temperature of stove#1 crossed 400 °c and water spray was introduced to cool the shell.
- Repair by injection done by the OEM in January 2020 and August 2021 but hot spots appeared again after 4 to 5 months and water spray on shell was restarted. Prolonged water spray was affecting the shell. Cost and timely availability of the service by OEM is not favourable.
- A repair technique has been developed by ISP using materials, machines and tools make in India. Repair by injection was carried out in June 2022.

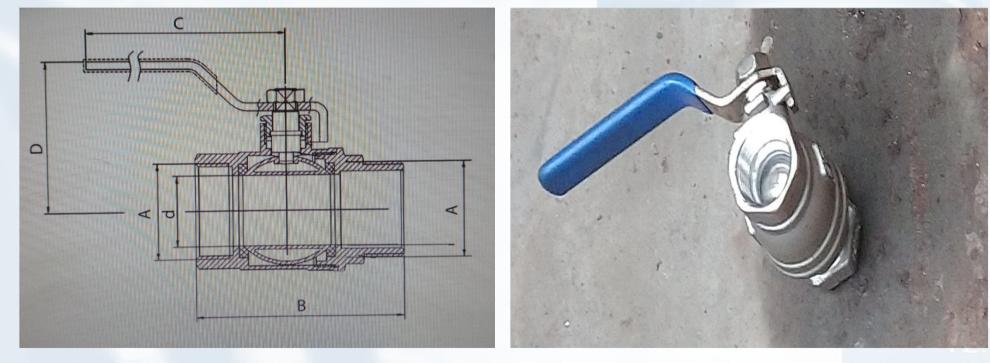
LOCATION AND SEVERITY OF HOT SPOTS IN DOME AREA



DOME

HOT BLAST MAIN

02/07/2022


DIFFICULTY TO CARRYOUT REPAIR IN DOME AREAS

- During shut down of the blast furnace, repair of the HBM and BM areas were carried out by cutting of shell or injection of mortars by welding nozzles on the shell by conventional repair methods. Draft created in Back-draft chimney ensures negative pressure in these areas.
- But at the dome, very difficult to create sufficient draft because of quite high temperature inside stoves compared to chimney.
- Hot gas comes out if any opening is created in the dome area.

12:08 02/07/2022

USE OF VALVE ALONG WITH THE NOZZLE TO STOP COMING OUT OF HOT GAS

02/07/2022

SELECTION OF REFRACTORY MATERIAL

Properties

Alumina (%)	45
Silica (%)	50
(wt%)	40
g/cc	0.52
°C	1400
	Silica (%) (wt%) g/cc

Performance parameters

- Insulating
- Ability to flow and penetrate through narrow gaps.
- Development of strength after installation
- Temperature resistance

OFF-LINE TEST

Surface of the brick structure

Inside the brick structure

02/07/2022

DRILLING AND TAPPING THE SHELL

DRILLING

TAPPING

>/ √ ↓ ⊥ 08 22

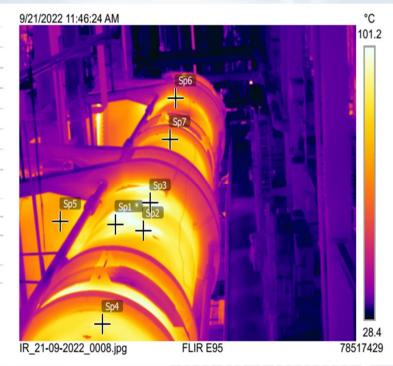
PUMPING OF REFRACTORY

PUMP

Process

- Nozzles and valves fixed by partial drilling and tapping of the shell
- Final drilling done through the valve
- Pumping done at 4 to 5 kg/cm2 pressure
- After pumping, valve removed and nozzles were capped.

COMPARATIVE THERMOGRAPHY OF HOT BLAST MAIN AREA


Before Injection

Measur	ements		°C
Ar1	Max	131.3	
Parame	ters		
Emissivity		0.95	
Refl. temp		20 °C	
Geoloca	ation		
Compass	S		

After Injection

Measuremen	its
Sp1 *	95.2 °C
Sp2	98.7 °C
Sp3	109.1 °C
Sp4	92.7 °C
Sp5	76.6 °C
Sp6	101.6 °C
Sp7	82.5 °C
Parameters	
Emissivity	0.98
Refl. temp.	20 °C
Note	
Hbm	

Location

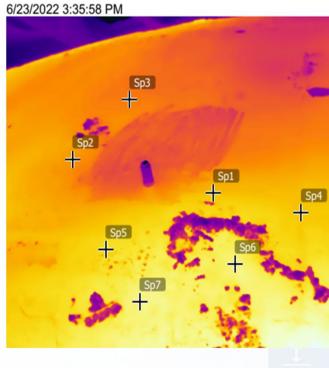
3.41"

THERMOGRAPH OF A HOT SPOT AT STOVE#1 DOME

Before Injection

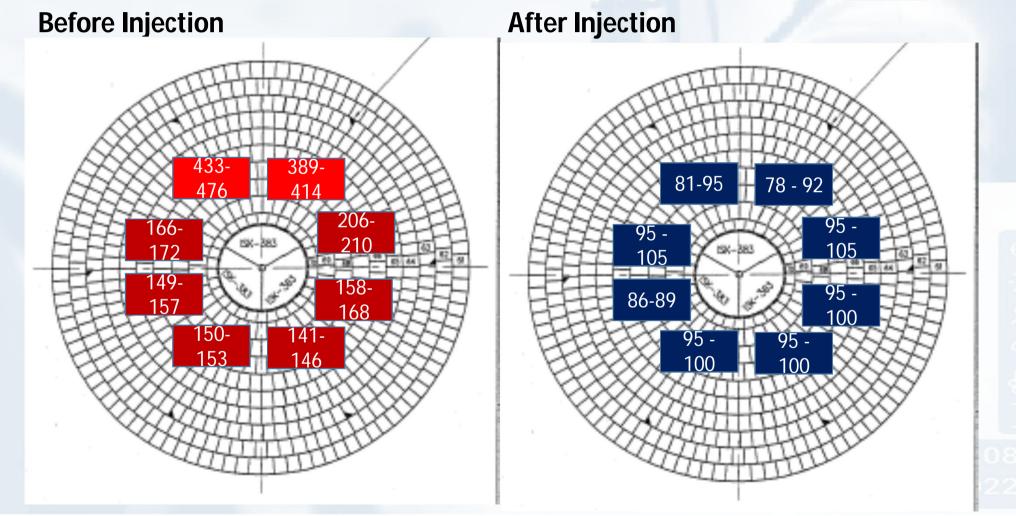
Measure	ments	6/23/2022 3:39:24 PM
Sp1	184.9 °C	Sp8
Sp2	185.9 °C	Sp5 +
Sp3	186.7 °C	
Sp4	184.3 °C	Sp3
Sp5	163.9 °C	Sp1 + Sp4
Sp6	172.7 °C	+ +
Sp7	156.6 °C	Sp2
Sp8	173.7 °C	
Paramete	ers	
Emissivity	0.98	
Refl. temp.	20 °C	Sp6
Geolocat	ion	+
Location	N 23° 40' 3.20", E 86° 55'	

After Injection


Measurem	nents
Sp1	94.5 °C
Sp2	92.5 °C
Sp3	91.2 °C
Sp4	94.9 °C
Sp5	95.7 °C
Sp6	98.6 °C
Sp7	98.8 °C

Parameters

Sp7


Emissivity	0.98
Refl. temp.	20 °C

Geolocat	ion
Location	N 23° 40' 3.13", E 86° 55' 3.08"
http://maps.google.com?z=17&t=k&g=23.6675,86.9175	

SHELL TEMPERATURES ON HOT SPOTS AT SEVERE ZONE OF STOVE#1 DOME

INFERENCE

- Defects in the insulation layers of the hot blast system of a blast furnace can be successfully repaired using ceramic fiber based pumpable refractory.
- The technology developed at SAIL-ISP can be used for online repair of hot blast stove without isolating the stove or taking shut down.
- The above technology ensures safety of the workmen from injury by hot gas/steam which may come out if the vessel have higher than atmospheric pressure. Coming out of hot gas or steam can be controlled or stopped by closing the valve as and when required.
- This is a low cost but effective Make in India solution with less lead time for implementation.

12:08 02/07/2022

THANK YOU!

12:08 02/07/2022