

International Conference on Future of Refractories in Iron & Steel Industries REFIS 4.0

"A Novel approach to reduce Torpedo ladle relining turnaround time

Biswajit Sahu*, Manoranjan Kumar Singh, Avinash Singh, Prasanta Panigrahi, Tushar Agrawal, Sujat Ali Khan, Brijender Singh

TATA STEEL, Jamshedpur, India

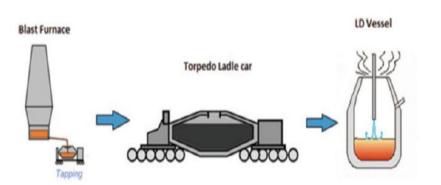
Mail id: *biswajit.sahu@tatasteel.com

Introduction

Torpedo availability is critical for hot metal transportation from Blast furnaces to LD Shops. considering the limited fleet, which is required for daily production at Tata Steel, Jamshedpur plant. Low torpedo availability can lead to low HM buffer & interruption in HM supply to LD Shops. Relining is a major activity (longest downtime) of torpedo maintenance so reduction in torpedo relining turnaround time will increase the availability of torpedo.

Current challenges:

- High Hot metal production
- Carbon foot print reduction- Environment friendly
- Cost pressure
- Easy, flexible and safe workbility



Current Practices and methods(1/2)

- At Tata Steel Jamshedpur works; a fleet of 48 refractory-lined, steel torpedo ladles are used to transport the hot metal from six Blast Furnaces to three LD shops.
- There are two types of torpedo ladle, consisting of 320Mt capacity and 200Mt capacity.
- At present 21nos of 200t and 27nos 320 t TLCs are in fleet to transport 32000 tons of hot metal per day

Parameters	320t	200t
Parameters	TLC	TLC
Vessel capacity with new lining	320t	200t
Hot metal temperature (deg C)	1550	1550
Weight of TLC (without refractory)	180 ton	113 ton
Weight of TLC (with refractory)	300 t (approx)	218t
Inside volume of vessel with new lining	51.23 m3	39.5m3
Available free board	2.27 m3	1.8m3
Overall height of car above rail top	4350 mm	4110 mm
Overall width of car	3500 mm	3428mm
Max. permissible shell temperature	300 deg C	300 deg C
Overall refractory thickness	400 mm	400 mm

Technical specification of Torpedo ladle cars

Current Practices and methods(2/2)

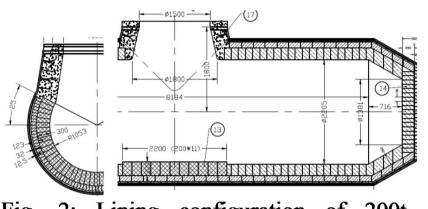


Fig. 2: Lining configuration of 200t torpedo ladle

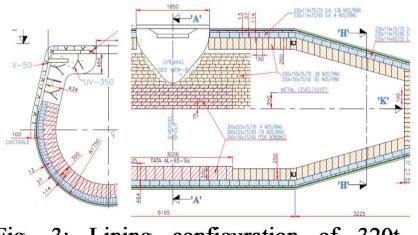
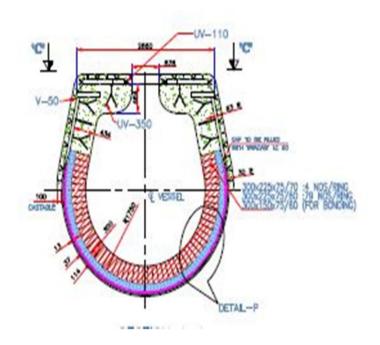
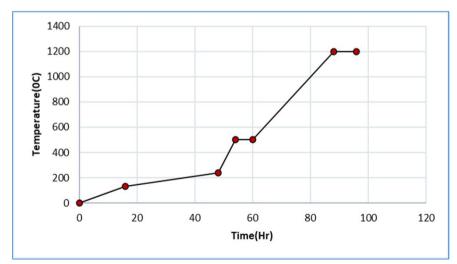



Fig. 3: Lining configuration of 320t torpedo ladle

Lining configuration of spout portion of 320t torpedo ladle



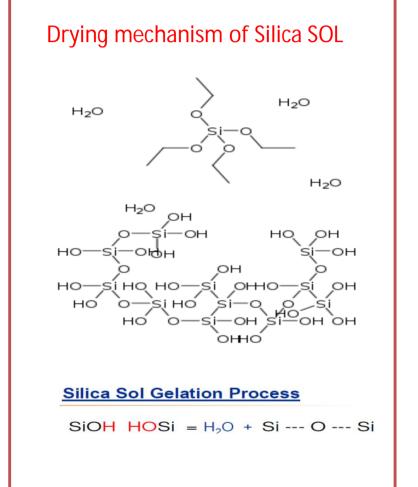
Activities performed for Torpedo repairing

SI no	Activities details	Time(Hours)	
1	Cooling	16	
2	Dismentling	64	
3	Mechanical+ Elecrical+other 48		
5	repair	40	
4	Refractory relining	204	
5 End wall lining, shield plate		24	
5	_casting-and-end-cover-closing_		
6	Heating	96	
	Total	452	

Relining is a major activity (longest downtime) of torpedo maintenance. reduction in torpedo relining turnaround time will increase the availability of torpedo. Current turnaround time for a newly lined torpedo 452 Hours, which includes 96 hours. of preheating schedule.

Existing Heating schedule of new relined torpedo

Issues with current Spout Low cement castable:


- Higher drying time
- Low self life (9 months)
- formation of low melting compounds, namely, anorthite (CaO · Al2O3 · 2SiO2) and gehlenite (2CaO · Al2O3 · SiO2)
- High energy consumption

Introduction to No cement based castable (NCC)

Benefits of NCC over LCC :

- Reduced drying time and drying defects due to the absence of free water for mixing and permeable structure.
- Inherent formation of mullite in alumina compositions improves corrosion resistance and hot strength properties.
- Better high-temperature properties due to absence low melting compounds in CaO–Al2O3–Fe2O3 and CaO–Al2O3–SiO2 systems.
- Better high-temperature properties result in longer campaign life and reduced downtime of operation.

Future of castable : NCC

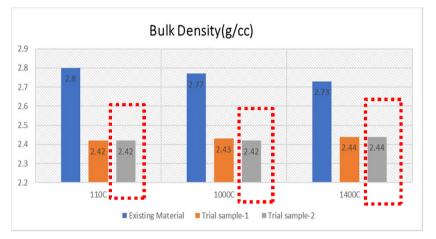
MANUFACTURING :

#WeAlsoMakeTomorrow

Their main characteristics are shown in **Table** and compared with the existing torpedo spout castable.

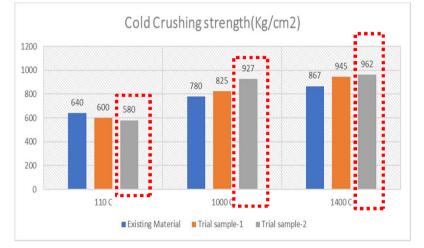
Sample type	Existing castable	Trial sample-1 (T-1)	Trial sample-2 (T-2)			
Base material/Bonding type	High Alumina	Mullite based Silica	Al2O3-SiC based			
base material/ bonding type	Cement bonded	Sol bonded	Silica Sol bonded			
CHEMICAL ANALYSIS(%)						
ELEMENT DESCRIPTION	ANALYSIS					
CaO	2.42 0.6 0.5		0.5			
SiO2	9.9	31.28	27.22			
Fe2O3	1.07	1.04	1.18			
Al2O3	83.03	63.36	56.47			
TiO2	2.26	1	1.09			
SiC	-	-	11.78			
OTHER PROPERTIES						
WATER (%)	6	-	-			
Silica SOL (%)	-	8.3	8.9			
@110 ⁰ C BULK DENSITY(g/cc)	2.8	2.42	2.42			
@110°C POROSITY (%)	14.7	14.22	15.2			
@110 ⁰ C CCS kg/cm2	640	600	580			
@1000°C BULK DENSITY(g/cc)	2.77	2.43	2.42			
@1000°C CCS (kg/cm2)	780	825	927			
@1000°C PLC(%)	-0.24	-0.06	-0.04			
@1400°C BULK DENSITY(g/cc)	2.73	2.44	2.44			
@1400 ⁰ C CCS(kg/cm2)	867	945	962			
@1400°C PLC(%)	0.59	-0.19	-0.1			
Corrosion Index	++	++	+			
RTE @1000 ⁰ C(%)	0.75	0.5	0.62			
Thermal conductivity' @800 ⁰ C(W/mK)	1.78	1.47	1.46			

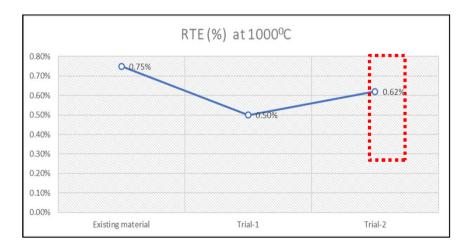
Chemical composition


- Very low lime percentage found in case of both trial Sol bonded castables due to usage of silica sol as binder in place of high alumina cement.
- Trial -2 contains Silicon carbide, whereas no SiC is present in trial-1 and existing castable.
- Less alumina percentage found in trial NC castables.
- ✓ Existing castable : LCC HAC bonded
- Trial Sample -1 : Mullite based Silica Sol bonded castable
- Trial sample-2 : Alumina- SiC based Silica Sol bonded castable

#WeAlsoMakeTomorrow

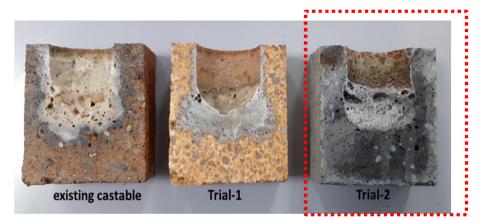
Results and discussions


Physical and other properties


Bulk density values at three different temperature

PLC values at three different temperature

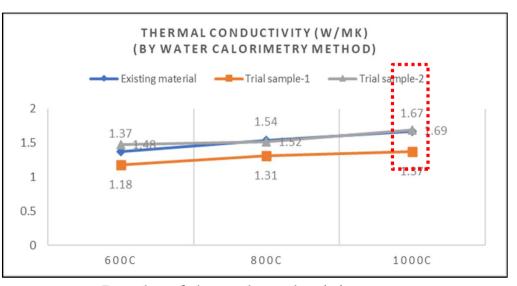
Strength values at three different temperature



Thermal expansion % at 1000 deg C

TATA STEEL # WeAlsoMakeTomorrow MANUFACTURING

Thermomechanical properties



Corrosion test with BF slag after firing at 1500 C/ 3hrs

Corrosion index			
Existing material	72.20%	++	
Trial -1	80%	++	
Trial -2	26.50%	+	

#WeAlsoMakeTomorrow

Results of thermal conductivity test

Application of Trial castable

SiC based sol bonded castable shown better refractory properties (Trial Sample-2) as compared to the existing cement bonded castable and the other mullite based sol bonded material.

Better high temp. properties

WeAlsoMakeTomorrow

- High corrosion resistance against BF slag
- Comparable thermal conductivity values

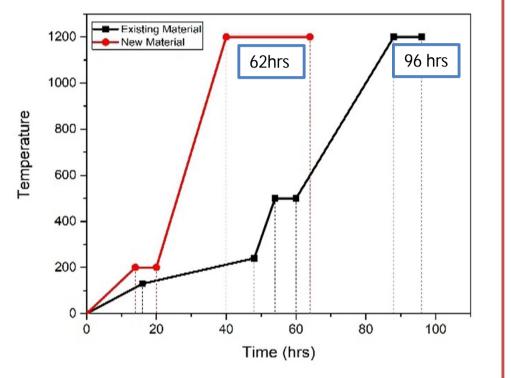
Based on all the analysis; SiC based sol bonded castable finalized to take trial for Torpedo Mouth application and to validate the actual performance at the site.

Condition of torpedo spout after preheating

MANUFACTURING 👩

TRIAL DETAILS

Date of Trial	15-05-2022	
Torpedo No	41	
Material used	Sol bonded castable	
Application area	Torpedo mouth/ Spout	
Qty of material used	~ 8Mt	
Binder used	Silica Sol	
Binder addition (%)	9.5	
Template removed	after 24hrs of casting	
Heating period	62 hrs	


after casting

During casting

MANUFACTURING

WeAlsoMakeTomorrow

Comparative heating schedule existing Vs Trial

Findings:

- Reduced drying time by 34hrs
- ✓ Very long shelf life (18 months)
- ✓ Reduction of CO gas consumption by 30%
- Lower consumption of repair material (like gunning consumption) due better high temp. properties
- Reduced Shell temperature within the safety norms (<300 Deg C) due to lower thermal conductivity values
- Enhanced corrosion resistance due to presence of SiC
- Ionger campaign life and reduced downtime of operation.

References

[1] S. Banerjee, "Monolithic Refractories–A Comprehensive Handbook," Singapore: World Scientific/The American Ceramic

Society, 311p (1998).

[2] S. Banerjee, "Recent Developments in Monolithic Refractories," Am. Ceram. Soc. Bull., 77 [10] 59-63 (1998).

[3] R. Kockegey-Lorenz, A. Buhr, D. Zacherl, B.Long, S. Hayashi and J. Dutton, "Review of Matrix aluminas for refractory formulations," in UNITECR 2011, Kyoto, Japan, 2011: 2-B2-9

[4] D. Bell, "Development of a computer program to model drying of castable blocks and linings," Refractories Applications and News, 2005, 10(2):18-22

[5] F. A. Cardoso, M. D. M. Innocentini, M. M.Akiyoshi and V. C. Pandolfelli, "Effect of curing time on the properties of CAC bonded refractory castables," Journal of the European Ceramic Society, 2004, 24(7): 2073-2078

[6] G. Palmer, J. Cobos, J. Millard and T. Howes" The Accelerated Drying of Refractory Concrete

[7] S. Klaus, J. Neubauer and F. Goetz-Neunhoeffer, "Hydration kinetics of CA2 and CA -Investigations performed on a synthetic calciumaluminate cement," Cement and Concrete Research, 2013, 43: 62-69

[8] M. D. M. Innocentini, F. A. Cardoso, M. M. Akiyoshi and V. C.Pandolfelli, "Drying Stages During the Heat-up of High-Alumina,

Utra Low Cement Refractory Castables," J.Am. Ceram. Soc., 86 [7] 1146-1148 (2003).

[9] S.H. Badiee, S. Otroj, Non-cement refractory castables containing nano-silica: performance, microstructure, properties, Ceramics-Silikaty 53 (4) (2009) 297–302.

[10] C. Parr, C. W ⁻ ohrmeyer, The advantages of calcium aluminate cement as a castable bonding system, in: Proceedings of St Louis Section Meeting of American Ceramic Society, USA (2006) pp. 20.

[11] M.A.L. Braulio, C. Tontrup, J. Medeiros, V.C. Pandolfelli, Colloidal alumina as a refractory binder, in: Proceedings of 35th Alafar congress, Lima, Peru (2010) pp. 10.

[12] S. Ghosh, R. Majumdar, B.K. Sinhamahapatra, R.N. Nandy, M. Mukherjee, S. Mukhopadhyay, Microstructures of refractory castables prepared with sol–gel additives, Ceramics International 29 (2003) 671–677.

[13] Biswas, Subir, and Debasish Sarkar. Introduction to Refractories for Iron-and Steelmaking. Cham, Switzerland: Springer International Publishing, 2020.

[14] A. M. Hundere, B. Myhre and B. Sandberg, "Mullite Bonded Castables," Proceedings of the International Symposium on Refractories, Haikon, China, 12-15, November 1996.

[15] Singh, A. K., & Sarkar, R. (2015). Synthesis and characterization of alumina sol and its use as binder in no cement high-alumina refractory castables. International Journal of Applied Ceramic Technology, 12, E54-E60.

Acknowledgments

We would like to thank RHIM India Team (Mr. Ayanendu Mandal and Mr. Prasanta Duary) for assistance with the laboratory sample and trial monitoring

THANK YOU

