Presenter Name: Surendra Prasad, GM & I/c (Refractory) SAIL CET-Ranchi

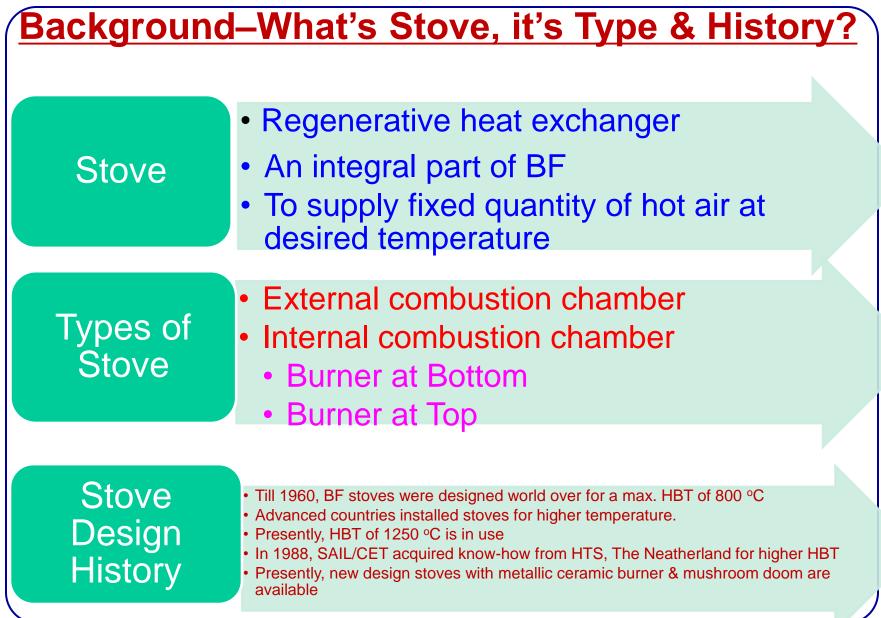
Paper name: **REFRACTORY DESIGN DEVELOPMENTS & APPLICATION FOR STOVES OF BLAST** FURNACES IN SAIL PLANTS

	PRESENT AFFILIATION	Steel Authority of India Limited (SAIL), Centre for Engineering & Technology (CET)					
1935	AREAS OF INTEREST	Refractory design & application, learning & teaching					
	EducationB.Tech. in Ceramic Engineering in 1986 f"Institute of Technology, Banaras HinduUniversity"						
Experience	 Sri Prasad joined Bokaro Steel Plant (BSL) in Aug. 1986 as Management Trainee (Technical). He worked there for three & half years in "Refractory Material Plant". In Jan. 1990, Mr Prasad joined CET, the in-house consultancy wing of SAIL and is posted in its Head Office at Ranchi. Since then, he is involved in design, engineering & consultancy for "Refractories" in the area of Blast Furnace, Steel Melting, Coke-Oven etc. Besides this, he is also involved in the jobs related to "Solid Waste Management". 						
Projects:	Sri Prasad was fully involved in the in-house design, engineering and refractory erection of 530 m3 Blast Furnace Complex at VISL, Bhadrawati in the year 1993-95, which was a first of its kind in India. His contributions in up gradation of a number of Blast Furnaces & Hot Blast Stoves in SAIL and other than SAIL, is quite significant and appreciable.						
Publication/ Patent	 Sri Prasad has a number of technical paper (more than 45) to his credit and has won a number of awards. Widely traveled in India and once in Egypt. Member of "Indian Ceramic Society", "Institute of Refractory Engineer", "Institution of Engineers India", "Computer Society of India" and "Indian Institute of Metals" 						

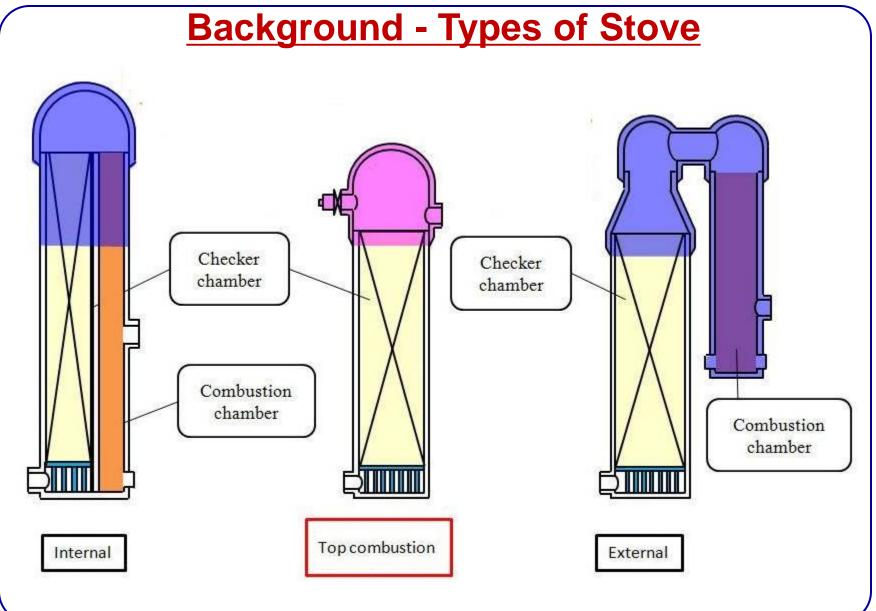
REFRACTORY DESIGN DEVELOPMENTS & APPLICATION FOR STOVES OF BLAST FURNACES IN SAIL PLANTS

By: Surendra Prasad, A.C.Goyal, A.Dewangan, T.C.Joshi & S.Manna (from SAIL/ CET, Ranchi) Occasion: REFIS 4.0 International Conference Refractories in Steel Industries At: Bokaro Steel City, Jharkhand Date : 23-24 Sept. 2022

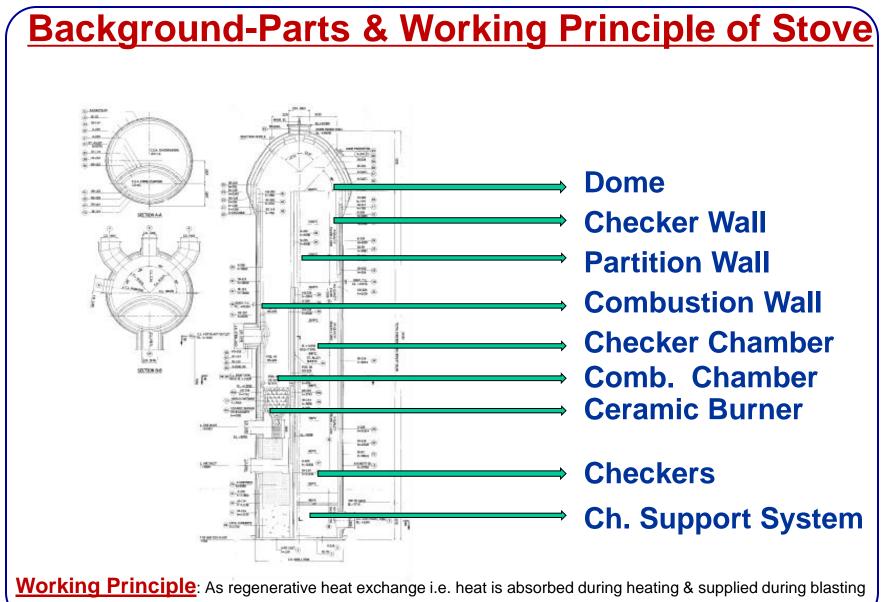
Steel Authority of India Limited

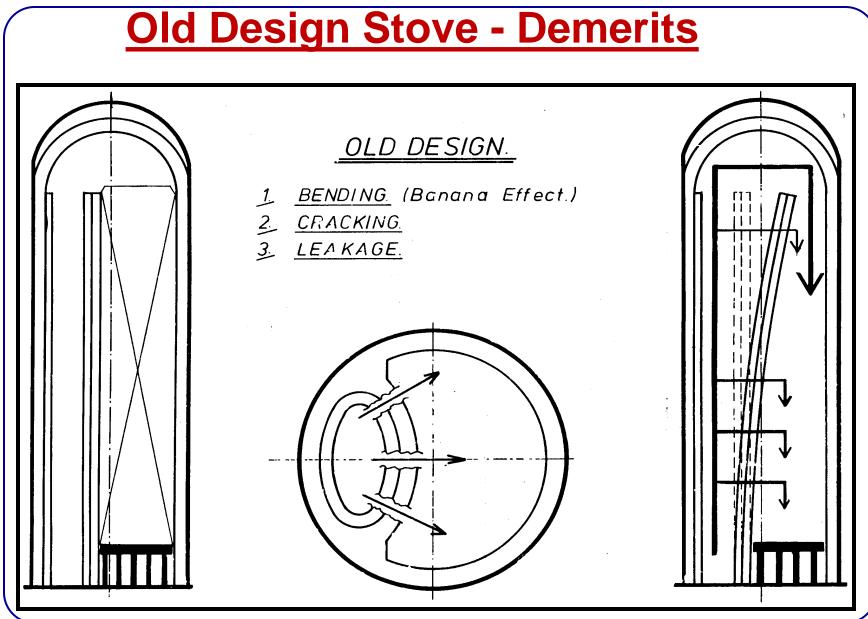


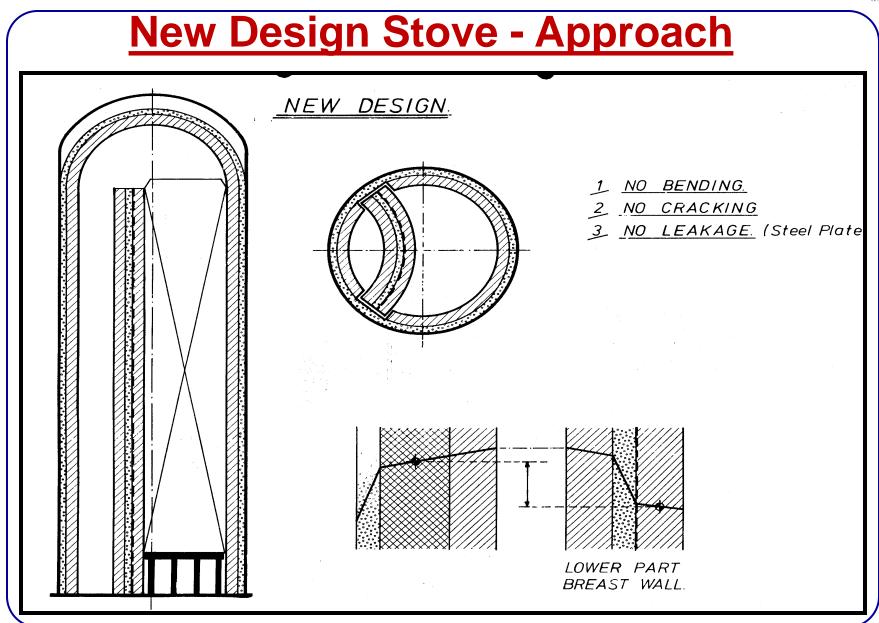
Part – 1

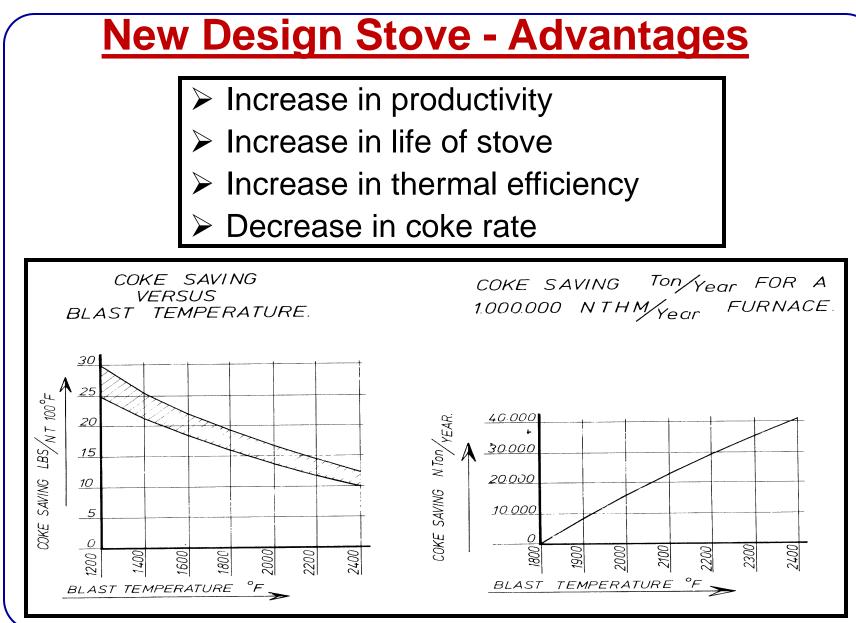

(Background)

Steel Authority of India Limited









Centre for Engineering & Technology, Ranchi

8

Stove Design - Considerations

- Conductivity of brick work
- Shape & Roughness of surface
- Temperature Difference
- Heat capacity of Refractory Material
- Velocity of gas

FACTORS FOR STOVE DESIGN	 No. of Stoves Mode of Operation Duty Requirement Fuel & Fuel Enrichment Space Consideration Pressure Losses Efficiency
-----------------------------------	--

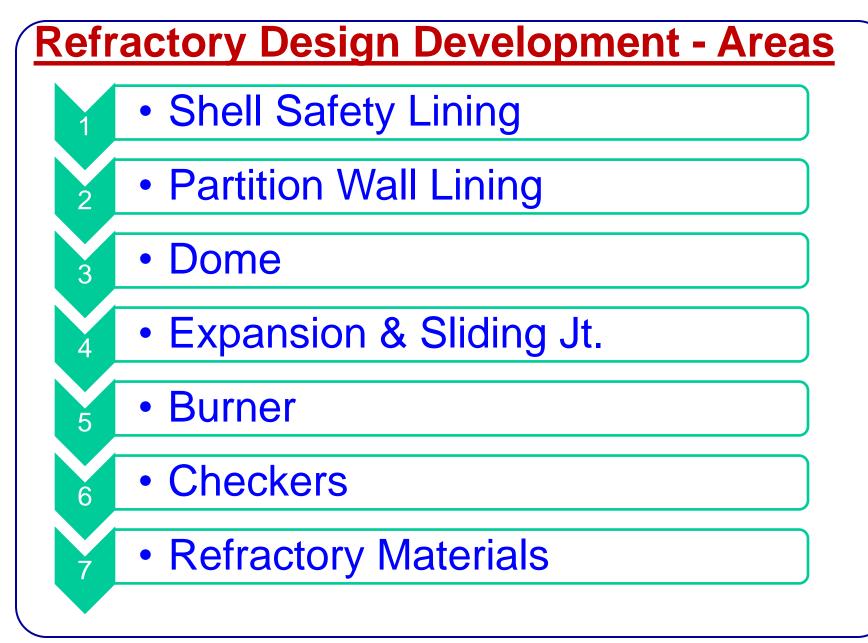
FACTORS

FOR HEAT

TRANSFER

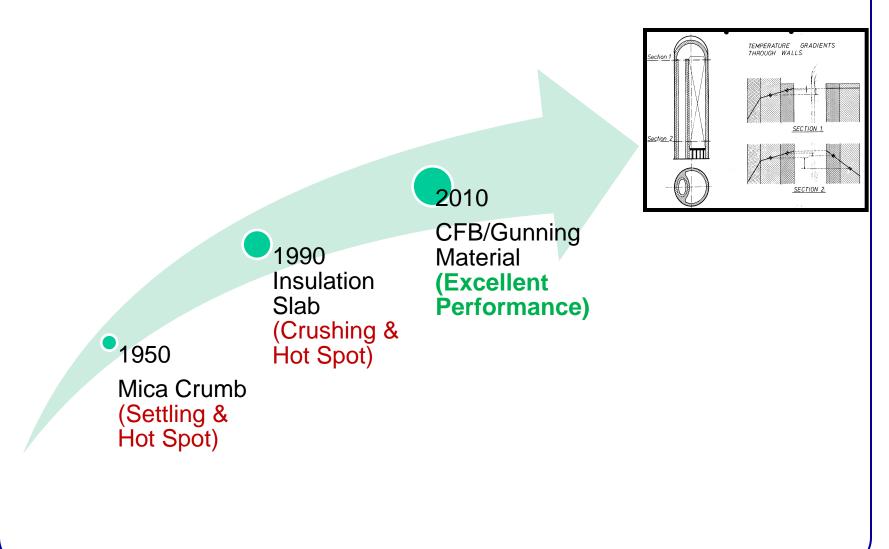
Stove Design - Steps

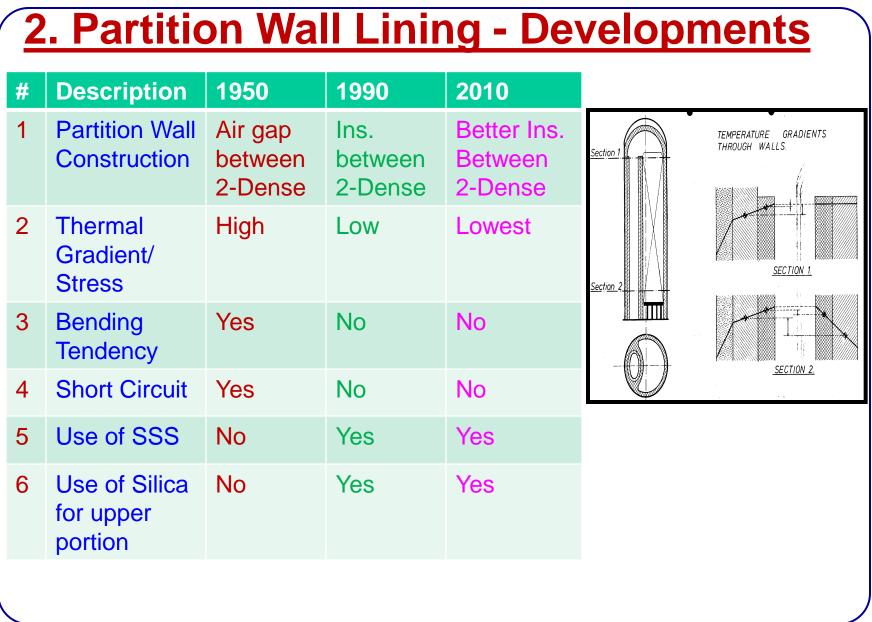
- Stove sizing using mathematical model
- Stove basic design
 - Temperature Calculation
 - Quality-wise Refractory Ht. / Exp. Calculation
 - Refractory G.A. Drawing
- Stove detailed design
 - > Brick Shape Generation (> 250 shapes)
 - B.O.M. Calculation (~ 1500T_Dense + 100T_Ins)
 - Tender Specifications
 - Detailed Drawings
 - Erection Instruction



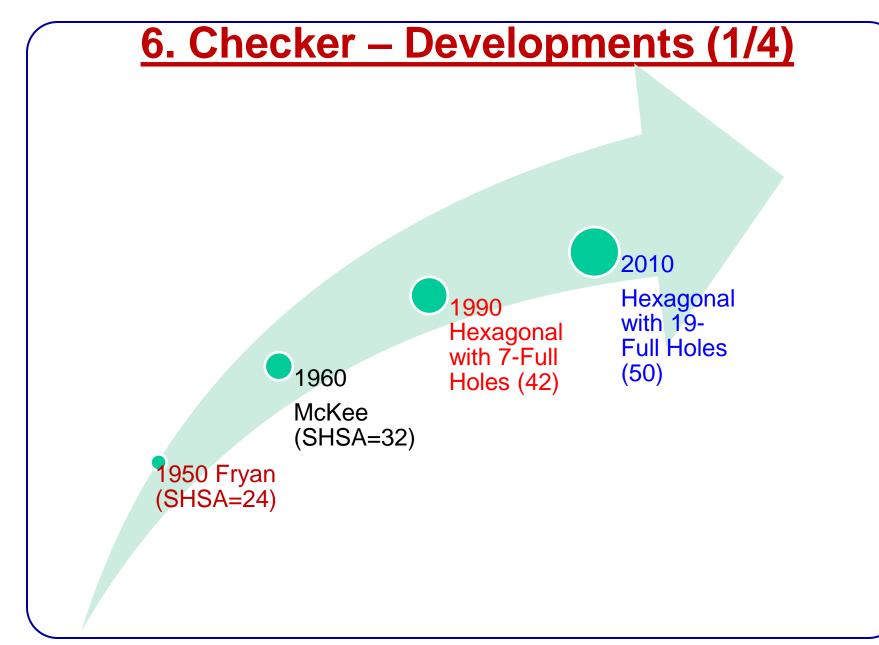
Part – 2

(Refractory Design Developments)

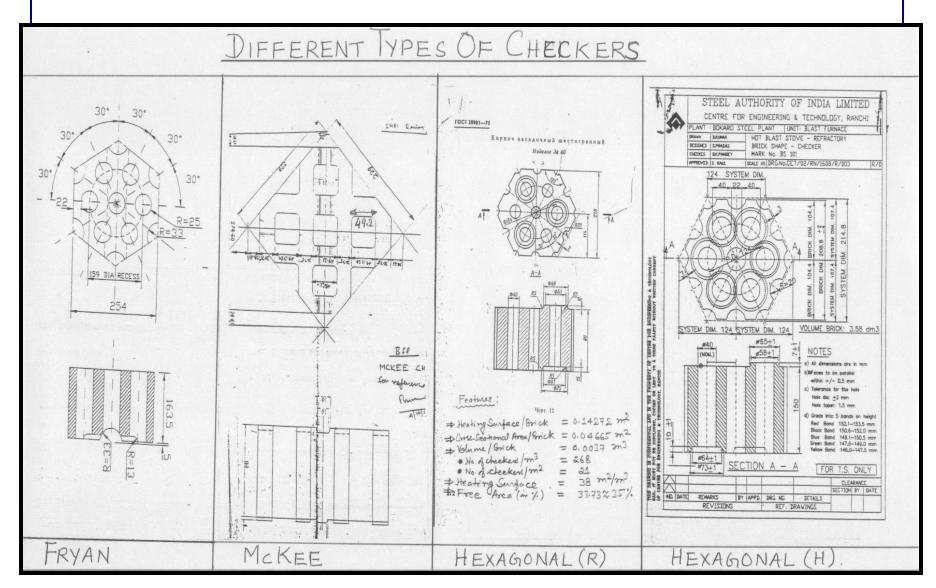

Steel Authority of India Limited

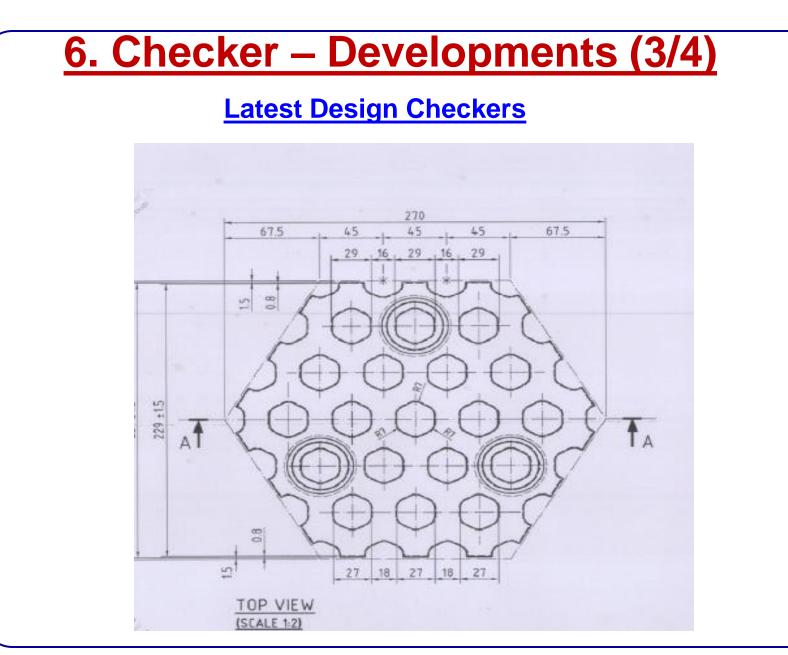


3. Dome - Developments EL.+35300 IE-QUAL (61) DOME INSIDE SHEL ECTION NOZZLE DOME P **Description** 1950 1990 2010 # Parabolic **Mushroom** 1 Type Hemi-Mushroom Dome spherical 1400°C HS-282 h=790 2 Ref. Wall Ref. Wall Shell Supported On IH-282 44 h=474 IG-114 3 Thick Thick Thin Ref. Wall Thickness at Base 4 **Movement** Dependent Dependent Independent arab**olie** Dome w.r.t. Wall 5 Construction Stable **Stable** More Stable Stress/ 6 Less More Least 745609 DOME TO Slipping of FOR DOME **Bricks** 7 Stability w.r.t. Good **Better Best HBT** Hemi-spherical Dome


_		2 Cli	dina	lte - Do	volonmonte
	4. CXP.		ung J	15 De	velopments
#	Description	1950	1990	2010	
1	Exp. Jts.	No	Yes	Yes	
2	Sliding Jt.	No	Yes	Yes	
•	Expansior	n Joint.:			
	Absorptior	n of exp	ansion c	of bricks	
•	Sliding Jo	<u>int.:</u>			
	To ensure				
	(of differer	nt grade	es of refr	actories)	
•	Advantage				
	Eliminati				
	Eliminati	on of hot	spot		
	Eliminati	on of pre	e-mature fa	ailure	

160


#	Description	1950	1990	2010	GAS
1	Туре	Mechanical	Ceramic	Metallic Ceramic	
2	Combustion	Fair & Un- stable	Good & Stable	Very Good & Stable	
3	Thermal Distribution	Poor	Good	Very Good	CROWIN R
4	Short Circuit	Yes	No	No	
5	Hot Spot	Yes	No	No	
6	Pressure Drop	High	Low	Low	
7	Pulsation	Yes	No	No	<u>Mechanical</u>



6. Checker – Developments (2/4)

Steel Authority of India Limited

6. Checker – Developments (4/4)

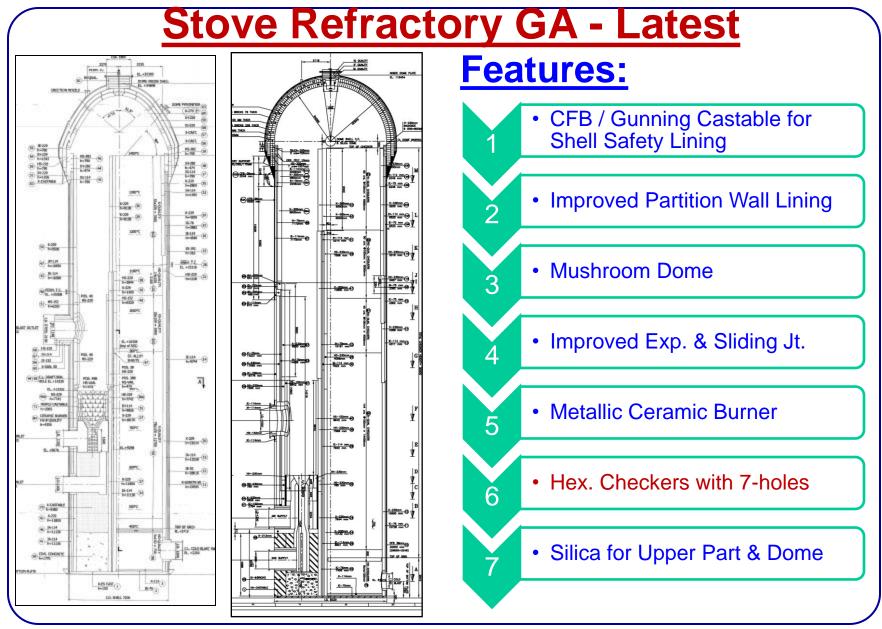
#	Description	Unit	Type of Checker						
			Fryan	McKee	Hex. (7)	Hex.(19)			
1	Specific heating surface	m ² /m ³	24.01	31.75	42.10	50			
2	Heating surface area / stove	m ²	27,114	38,855	47,430	65,450			
3	Gas volume	Nm ³ /h	40,628	39,371	39,182	38,872			
4	Air volume	Nm ³ /h	35,980	34,874	34,718	34,556			
5	Waste gas temperature	°C	302	258	255	249			
6	Efficiency	%	78.98	81.5	81.89	82.78			
7	Fuel cost/yr.	Rs Cr	262.1	254.0	252.8	251.2			
8	Saving w.r.t. Fryan	%	0	3.1	3.55	4.2			

	7. Refractory Material - Developments										
#	Description	Unit	Refractory Material								
			Silica	Magnesite	High Alumina						
1	Thermal expansion	%									
	At 0 – 300 °C		1.1-1.2	0.35	0.1-0.2						
	At 300 – 600 °C		0.1-0.2	0.4	0.1-0.2						
	At 600 – 1500 °C		0.0-0.2	1.8	0.4-0.6						
2	Thermal expansion	-									
	At 0 – 300 °C		Very Poor	Poor	Good						
	At 300 – 600 °C		Good	Poor	Good						
	At 600 – 1500 °C		Excellent	Poor	Good						
3	Bulk Density	g/cc	1.8	2.5-2.6	3.0						
4	Heat Capacity	-	Low	Very High	High						
5	Chemical Resistance	-	V/Good	Good	Good						
6	Dust built on top Checkers	-	None	Small	Cauliflower formation						

Part – 3

(Status of Stove Design in SAIL)

Steel Authority of India Limited



Status of Stove Design in SAIL														
Desc.	^{Desc.} Unit BSP		DSP		RSP		BSL			ISP				
BF#	-	1	4-6	7	8	2-3	4	1	4	5	1	2	3-5	5
BFs (18)	Nos.	1	3	1	1	2	1	1	1	1	1	1	3	1
U/V	m ³	1033	1719	2355	4060	1400	1800	1710	1658	4060	2000	2586	2000	4060
Design	-	USSR	USSR	USSR	PW	UK	UK	DC	Germ	DC	USSR	USSR	USSR	Posco
Yr. of Inst.	-	59-60	64-71	71	2018	59-62	67	59	60-62	2013	72	76	78-82	2014
Stoves/BF	Nos.	3	4/3	4	3	3	3	3	3	3	3	3	3/4	3
Stoves (57)	Nos.	3	10	4	3	6	3	3	3	3	3	3	10	3
Stove Dia.	mm	8500	8980	9000	10700	7920	8230	7200	8500	10200	7925	8980	8980	10200
Stove Ht.	mm)	40000	35974	45200	45343	33500	39487	34282	38000	48500	35830	45174	45174	48500
HBV	Nm³/min	1200	3400	3570	5298	-	3000	2300	2750	1000	3333	3064	3000	1000
НВТ	°C	11 00	1 200	11 00	1250	1100	1200	1200	1100	1200	1200	1100	11 00	1250
Dome	-	н	H/ P	н	Mu	H/ P	Р	Mu	Р	Mu	Mu	Р	H/ P	Mu
Burner	-	м	M/ C	С	С	С	С	МС	M/ C	С	МС	С	M/ C	С
Checker	-	B/H-7	H-7	Mc/H-7	H-7	H-7	H-7	H-7	H-7	H-7	H-19	H-7	H-7	H-7
Silica	-	Ν	N/ Y	N	Y	N	Y	Y	Y	Y	Y	Y	N/ Y	Y
Design	-	USSR	HTS	USSR	PW	CET	HTS	DC	CET	DC	PW	CET	CET	DC
Yr. of Inst.					2.2.2018			Со		6.8.2013	Со	2009	2012	30.9.2014

Note: H=Hemispherical, P=Parabolic, Mu=Mushroom, M=Mechanical, C=Ceramic, MC=Metallic Ceramic, B=Basket & Beave, H-7=Hexagonal with 7-holes, Mc=McKee, H-19=Hexagon with 19-holes, Co=Commissioned HTS=Hoogovens Technical Servises, PW=Paul Wurth, CET=Centre for Engineering & Technology, DC=Danieli Corus

Steel Authority of India Limited

Conclusion

□SAIL has 57stoves

✓ 15-Stoves are of latest design (Mushroom dome, etc.)
✓ 35-stoves have been modified by CET (Parabolic dome etc.)

✓07-Stoves are of old design (Hemi-spherical dome etc.)

- ✓ 06-Stoves have Metallic Ceramic Burner
- ✓ 33-Stoves have Ceramic Burner
- ✓ 18-Soves have Mechanical Burner
 - ✓ 36-stoves have silica refractory
 - ✓ 21-Stoves have high alumina refractory

Thrust in coming years:

To get maximum out of the stoves thro':

Design modification

- Material selection
- Standardisation of material specification
- Better stove operation

With minimal investment

