

Presenter Name: Dr. Jyoti Prakash Nayak

Paper name: Alumina Rich Spinel Refractories for Steel Ladle Application - A Complete Solution by TRL Krosaki

	PRESENT AFFILIATION	TRL Krosaki Refractories Ltd			
	AREAS OF INTEREST Aluminosilicate Refractories				
	Education	 Ph.D. (Bio ceramics) B.E. & M.Tech. (Chemical Engineering) 			
Experience	• 12 yrs.				
Projects:	 Ph.D. (01 - continuing) - As co-guide : NIT, Rourkela M.Tech. (02-nos completed) – As co-guide : Govt. College of Engg. & Ceramic Tech., Kolkata (2016) 				
Publication/Patent	 ✓ 08-nos. in high impact factor journals ✓ 11-nos. in refractory based Technical articles/Journals 				
	✓ 02-nos. patent (Applied)				

Alumina Rich Spinel Refractories for Steel Ladle Application – A Complete Solution by TRL Krosaki

Dr. Jyoti Prakash Nayak

Contents

- Background
- Introduction
- Objective
- Product Development
- Results
- Conclusions

Background

In early 1960s, increases of crude steel production and growth of demand for higherpurity steel.

(Adoption of MgO-Cr₂O₃ Brick)

In 1972, established stable operating technology for stainless steel production.

In 1980s, demand for higher-purity steel increased.

In 1990, demand for ultralow-carbon steel - Adoption of (Al₂O₃ + Spinel + Magnesia/Dolomite Brick)

♦ From 1995 onwards, demand for ultralow-carbon steel - Adoption of (Al₂O₃ rich + Mg Al₂O₂₈, Spinel brick)

Introduction

Characteristics of Alumina Rich Spinel Brick

- Solution High Chemical Purity $(AI_2O_3 + MgO) > 99.0 \%$
- S High Refractoriness
- Suppressing slag penetration
- S High corrosion resistance
- Withstand on operational changes such as increasing tapping temperatures & longer holding times
- So No carbon pick up by steel from the lining

Hence, Spinel based refractories are now being used widely in steel, glass, lime, and cement industries.

Refractory Lining Pattern of Steel Ladle

Mechanism of Steel Processing via Refractory Lining

During production of steel, the degree of oxide inclusions partly depends on the reaction of the melt with the furnace lining, the ladle lining and the pouring system. The refractory may be eroded by the molten steel and slag as well as corroded through chemical reaction with the slag and molten steel and the deoxidation of products.

Thus, it is important to understand the mechanism involved during processing of steel through steel ladle by using refractories via;

- (i) Thermodynamics and thermo physical phenomena
- Diffusion of gaseous components to the boundary layer
- Chemical reaction at the interface
- Diffusion of dissolved components to the bulk and the growth of the oxide at the interface

(ii) Kinetic reactions

- (i) Thermodynamics and thermo physical phenomena
- Diffusion of gaseous components to the boundary layer
- Chemical reaction at the interface
- Diffusion of dissolved components to the bulk and the growth of the oxide at the interface

According to Lee & Zhang, the motion of the slag film caused by surface tension phenomena (wettability) between the refractory and slag essentially causes the local corrosion of refractories at the slag surface (Fig 1). This is because the slag film motion accelerates the dissolution rate of the refractory and also induces the abrasion of some refractories.

Fig. 1: Motion of the slag film caused by the surface tension phenomena between the refractory and slag.

Note:

The active film motion is dominantly induced by the <u>Marangoni effect</u> and/or change in the form of the slag film due to the <u>variation</u> of the <u>surface tension</u> and the <u>density of slag film</u>.

Lee W. E.; Zhang S.: Melt Corrosion of Oxide and Oxide-Carbon Refractories, International. Materials Reviews, Vol. 44, No. 3, (1999) pp 77-104.

(ii) Kinetic Reactions

Corrosion of the lining material in contact with slag during ladle refining of steel is usually described in three major categories:

- Dissolution, or diffusion, which is a chemical process by which the refractory material is continuously dissolved
- Penetration, by which the slag penetrates into the refractory and causes mechanical effects
- Erosion, which is the abrasion process of the refractory material exposed to gas and slag movement

Erosion of the refractory material in contact with the slag is dependent on the abrasion, which is determined by the high-velocity slag and gases. It is common opinion that the erosion effects are not so high when alumina or magnesia linings are used. However, the corrosion rate is typically higher for a polycrystalline ceramic (refractory) than for a single crystal, due to grain boundary effects.

Note: Viscosity is an important factor also that affects the penetration. At the boundary layer, where the slag dissolves some refractory oxide, the viscosity of the slag will increase and further attack by the slag is then possible by diffusion through a viscous slag layer at the interface.

Impact of Slag Eye on Performance of Steel ladle

21st Australasian Fluid Mechanics Conference Adelaide, Australia 10-13 December 2018

Model of Fluid Flow, Mass Transfer and Slag-Steel interfacial behavior in Gas Stirred ladle

Article in Metallurgical and Materials Transactions B · February 2018 DOI: 10.1007/s11663-018-1206-y

... With Reality in Steel Ladle

- Interface of steel ladle gets damaged severely when **Two Plugs are being operated**.
- This may be due to mis-match of characteristics of refractories at the junction of S/Z and M/Z.

Slag Corrosion Study

S4

Extensive Study on Fired Spinel Brick by TRLK

0.0

Grains dislodging started from the test

specimen at 6th Cycle onwards.

(Sta	tic CUP Test M	ethod - 1600 °C/3	hrs)	S	3	
Sample No.	Cavity Corroded in 'X' Direction (mm)	Initial Diameter of Cavity in 'X' Direction (mm)	% of Corrosion	J. Josephile		X.
S1	45.91	45.71	0.44	7.		
S2	47.71	45.74	4.31			
S3	47.93	45.75	4.77		- Contre	Cores
S4	49.12	45.78	7.30		1	
	Slag Co	mposition	٦		•	52
	Constituants	Weight (%)			and the second second	I service all
	CaO	62.3		- We and the state of the	Constant Constant	No. of Street St
	SiO ₂	9.16		1		The second se
	Fe ₂ O ₃	0.92			THE REAL PROPERTY	
	MgO	5.09				
	Al ₂ O ₃	22.4			Computer Com	and the second se
Therm	nal Shock Re	esistance Stud	y of Sp	inel Brick Sa	mple (DIN M	lethod)
Sample	ample No. Nucleation of Micro fine Crack		Crack	width increased	Spalled at	Nature of Spalling
S1		3 rd Cycle		7 th Cycle	14 Cycle	Circumferential
S2		5 th Cycle		10 th Cycle	15 Cycle	Circumferential
\$3		8 th Cycle		14 th Cycle	Not Spalled (+ 20 nos.)	Crack Propagated Circumferentially

17th Cycle

Not Spalled

	Porosimetry St	udy of Sj	oinel Brid	k Samp	le
	Sample No.	S1	S2	\$3	S4
	Total Intrusion Volume(ml/g)	0.0501	0.0554	0.0607	0.0627
	Total Pore area (m²/g)	0.137	0.187	0.175	0.187
	Medium pore dia (v) micron	2.3064	1.9588	2.7153	1.5993
	Medium pore dia (A)micron	0.8671	0.6312	0.6915	0.849
	Average Pore dia micron	1.4647	1.1846	1.3865	1.3403
	AP (%)	15.6	17	18.5	18.9
	BD (g/cc)	3.1109	3.078	3.0446	3.0109
	ASG	3.6846	3.7105	3.7354	3.712
	Permeability (mdarcy)	3.7347	7.0095	28.119	11.9327
					Sua
	Distribution		Volu	me (%)	~
	> 100 µm	2.2	2.2 3.1 2.1 5.5		
	> 10 µm	11.4	21.1	30.2	22.8
	> 1 µm	66.3	46.0	31.5	48.5
	> 0.5 μm	14.6	21.5	29.4	18.6
	> 0.1 µm 5.5 8.3 6.8		4.6		
	< 0.01 µm	0	0	0	0
Sample 1	Cumulative Intrusion vs Pore size Sample 2		Sample 1	Differe	ential Intrusion vs Pore <u>Sample 2</u>
Sample 3	Sample 4		.07 Sample 3		Sample 4
		(0.06		Α
0.05		(.05		
		ur/g/jm	0.04		
0.03					
0.02					
0.01			0.01		
0.00				A	/

23/09/2022

11th Cycle

Major Issue with Steel Ladle

Prototype Slag Corrosion Study

Before Heat Treatment

TRLK

"X"

"Y"

- CUPs of both quality joined by using thin layer of >90% mortar.
- Two CUPs are aligned such a way that as if having one cavity.
- LF-Out slag has been used for corrosion study.

Slag Corrosion at 1600 °C/3 hrs After Heat Treatment **TOP View**

Prototype Slag Corrosion Study : at 1600

Raw material Properties Related with Steel Ladle Refractories

Properties	MgO	Graphite	Al ₂ O ₃	MgAl ₂ O ₃
Melting Point (°C)	2852	+3550	2054	2135
Thermal Expansion (.10-6/°C)				
at 500 °C	11 - 13		7.3 - 8.0	7.6
at 1000 °C	13 - 15	2.7 – 3.7	8.7 - 9.3	8.4
at 1500 °C	15 - 19		9.3 - 9.9	10.2
Thermal Conductivity (W/mK)				
at 25 °C	40	133.02	38	15
at 100 °C	38	128.54	36	13
at 500 °C	16	88.61	11	8
at 1000 °C	7	64.26	7	5
Density (g/cm ³)	3.65	1.637	3.99	3.58

Mean Thermal Expansion Coefficients*

Material Linear Expansion Coefficient, 0-1000F in./in. °c x 10 -6

Alumina (Al₂O₃) 8.8

Magnesia (MgO) 13.5

Spinel (MgOAl₂O₄) 7.6

*Source: Kingery, W. D., Introduction to Ceramics, 1976, John Wiley ~ Sons, Inc.

INTERFACE

• Mismatch of Thermal Gradient

- Mismatch of Thermal Expansion Ratio-Leads stress development
- Susceptible area to generate low contact angle (θ_c) by molten material
- Vulnerable area for development of Eutectic phases.
- Most attacking area of Slag Eye.

Concept to Reality

- It is concluded that to balance the Thermal gradient, Thermal Expansion ratio, and Non wettability characteristics of refractory between S/Z and M/Z interface area; an equivalent grade of refractory, which is nearer (Characteristics wise) to MgO-C and Al₂O₃-Spinel grade should be developed for steel ladle interface application, which can suppress the Marangoni effect on refractory lining.
- Thus, Alumina-Spinel refractory having optimized "C" content should be preferred to counter such issue for steel ladle application.

Product Description: Resin Bonded Al₂O₃-Spinel Baked Product

- Low porosity
- High Cold Crushing Strength
- High HMoR in Reducing atm.
- Excellent Corrosion Resistance

54	and an and a second	and the second	Real	arkette		and a	T
1	artisti	and the second		A COL	sel.	NICO STATE	Size
antaña Menno	খাঁচন	T. Sol	1	Rigi	1	Ran	-
and a state	age	areas	ille a	-		artist	-
-	and a	-	adr.	-		and the	State.
R.B.S	RUS	1.55	alle.	8000	Ring .	unit,	800
also a	arps.	Rear		adar .	alas .	aler.	alle a
-	and the	alar	stati	-	-	800	and a
argie.	22.5	and an	sigis.	ais.	ale:	and a	adar

KROSAKI GROUP Slag Corrosion Test of Spinel Products

Induction Slag Furnace (inside view) after lining

Induction Slag Furnace (top view) after lining

- 1. SLM 2 (MG)- Fired Product
- 2. SLM 2 (MG)- Fired Product
- 3. TRL SLM 3 Baked Product
- 4. TRL SLM 3 Baked Product
- 5. SLM 2 (I) Fired Product

TRL SLM 2 (I)

TRL SLM 2 (MG)

TRL SLM 3

Corrosion Test Results

Tested Sample ID		Base line	Corrode Line	% Corrode
1 SLM 2 (MC) Eirod Broduct	А	38.40	20.78	45.88
I. SLW 2 (WG) – Fired Froduct	В	38.40	20.97	45.39
		39.34	21.87	44.40
2. SLW 2 (WG) - Fired	В	39.34	21.68	44.89
3. SLM 3 - Baked Product	А	37.90	25.13	33.69
	В	37.90	25.42	32.92
A SLM 2 Deked Dreduct	А	37.40	24.83	33.60
4. SLW 3 - Baked Product	В	37.40	24.89	33.45
E CLM 2 (I) Fired Dreduct	А	38.14	20.10	47.29
5. SLW 2 (I) – Fired Product	В	38.14	20.17	47.11
C CI M O (I) Final Product	А	38.80	20.83	46.31
6. SLW 2 (I) – Fired Product	В	38.80	20.77	46.47

% Corrosion=[(X-Y)/X]*100

A & B : Two parts of sample after slicing

Corrosion Resistance:

TRL SLM 3 (Resin bonded spinel brick > SLM2 (MG) > SLM 2 (I)

KROSAKI Properties of Alumina Rich Spinel Bricks

Properties	Fired Spinel Brick	Baked Spinel Product	
AP (%)	16.7	5.6	
BD (g/cc)	3.13	3.21	
CCS (kg/cm ²)	520	663	
RUL (t _a) °C	1750+	1750+	
PLC at 1450°C/2hrs (%)	+0.05	+0.14	
HMoR at 1500°C (MPa)	4.5 - 6.8	2.9 - 4.4	
Spalling Resistance	****	***	
Slag Corrosion Resistance	***	****	
Microstructure (SEM)	 Pores between grain boundary. Spinel aggregates are well distributed. Corundum grains are surrounded by Spinel materials. 	 Very compact, and Corundum grains are surrounded by Spinel materials. Matrix part is quite rigid. 	

Performance of Spinel products

	Steel Ladle No-14 (Set-2) Tra	nsition Zone 3 layer Spinel Carbon	Steel Ladle No-9(Set-3) Transition Zone 3 layer Spinel Carbon						
	Ob	servation	Obse	rvation					
Date	3-Feb-21	8-Feb-21	9-Feb-21	14-Feb-21					
Heats	32	49	13	47					
Status									
Remark	No abnormalities	No abnormalities	No abnormalities	No abnormalities					
NB:	During the Circulation period In Spinel Carbon bricks Unlike fired spinel no chop-off, no abnormal erosion, no Slag-Metal zone gap generation observed								

Concluding Remarks

For steel ladle application, TRLK is providing complete refractory solution along with benchmark services.

For spinel product category, high performance oriented baked product i.e., TRL SLM 3 has been developed and commercialized by TRLK successfully.

By using TRL SLM 3 for steel ladle application, not only it will help steel maker to save time and money, but it will help a lot to reduce "Carbon Footprint", which is a global concern now a days.

Thank You

