Presenter Name: INDRANIL ROY Paper name: High performance alternate quality refractory for hearth of reheating furnace.

.

	PRESENT AFFILIATION	RDCIS, SAIL	
	AREAS OF INTEREST	Shaped and unshaped refractories.	
	Education	B.Tech in Ceramic Technology	
Experience	 Design and application of refractories for BOF, Steel ladle. Design and application of refractories for reheating furnaces. Design and application of monolithic refractories. Waste utilization. 		
Projects:	 Improvement in refractory lining life of BOF. Improvement in refractory lining life of Steel ladle. Development of monolithic refractories for application in iron and steel industry. Wealth out of waste. 		
Publication/ Patent	More than 15 international & national publications. More than 12 patents filed.		

High performance alternate quality refractory for hearth of reheating furnace

I.Roy[#], M.K.Kujur[#], S.Aman[#], A.Paul[#], R.K.Pradhan^{*}, R.K.Singh^{*}

#R & D Centre for Iron and Steel (RDCIS), *SAIL Refractory Unit (SRU)

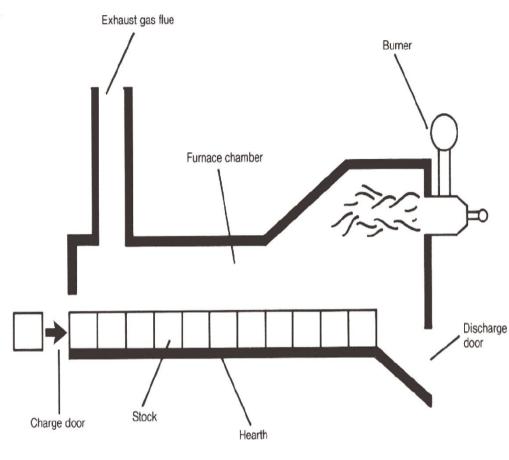
23rd – 24th September, 2022, Bokaro

Road Map

Introduction/ Background

Experimental details

> Results & Plant trial


Conclusions

Introduction/ Background

Reheating Furnace of Merchant Mill of DSP

Schematic diagram of Reheating Furnace

- No. of Furnace: 1.
- Type of furnace: Pusher.
- No. of repair/ relining per year: 1.
- Relining schedule: 8 days.
- Fuel used: Coke oven gas.
- Slop of furnace hearth: ~7⁰.
- Present refractory in use in preheating zone hearth: ZCC block.
 - Temperature of different zone:

Pre-heating zone: 900°C–1000°C.

Heating zone: ~1150°C.

Soaking zone: ~1300°C.

Specification of ZCC blocks

Al ₂ O ₃ (Min.), %	94
A.P. (Max.), %	16
B.D. (Min.), gm/cc	3.15
CCS (Min.), kg/cm²	1000
RUL (t _a) (Min.), ^o C	1700
PLC (at 1600ºC) (Max.),%	± 0.5
HMOR (at 1400ºC/0.5 Hrs.) (Min.), kg/cm²	100

• About 900–1000^oC temperature inside the furnace. Refractory need to bear the load of billets at that temperature.

• Mechanical abrasion of Refractory hearth bricks and vibration due to movement of billets during the operation.

• Continuous heating & cooling effect on refractories due to opening of charging door and charging of cold billets.

• Completely solid hearth, so there is no space for volume change for hearth bricks during operation.

Experimental details

Development of High Alumina bricks

- Selection of Raw Materials
 - Andalusite; WFA; Fused Mullite; calcined Alumina; etc.

[Keeping in mind about the operating condition (e.g. Continuous heating & cooling; Mechanical abrasion at high temperature; etc.)]

- Mixing & Pressing
 - Molasses was used as green binder.
 - Used intensive mixer for mixing.
 - Pressed at a specific pressure of 1 ton/cm².
- > Drying @ 110° C for 24 hrs.
- ➢ Firing @ 1500⁰C

Results & Plant trial

A.P., B.D., C.C.S., RUL, & Spalling Resistance

Tests	Comp1	Comp2	Comp3
Avg. Apparent porosity (%)	16.28	14.58	15.88
Avg. Bulk density (gm/cc)	2.75	2.79	2.77
Avg. Cold Crushing Strength. (kg/cm ²)	893	1026	1024
Avg. R.U.L $(t_{a}^{0}C)$	1600+	1600+	1600+
Avg. Spalling Resistance at 1000°C, Cycles, Min. (By Water Quenching)	55+	55+	55+

Repeat P.L.C.A.R. & Abradability Index (AI)

	Tests					
Comp.s	PLCAR-1 (%)	PLCAR-2 (%)	PLCAR-3 (%)	A.I. (B.S. 1902: Section 4.6: 1985)		
Comp1	0.166	0.229	0.073	72.97		
Comp2	0.027	0.317	0.067	48.12		
Comp3	0.088	0.133	0.026	43.21		

Specification of Developed High Alumina bricks

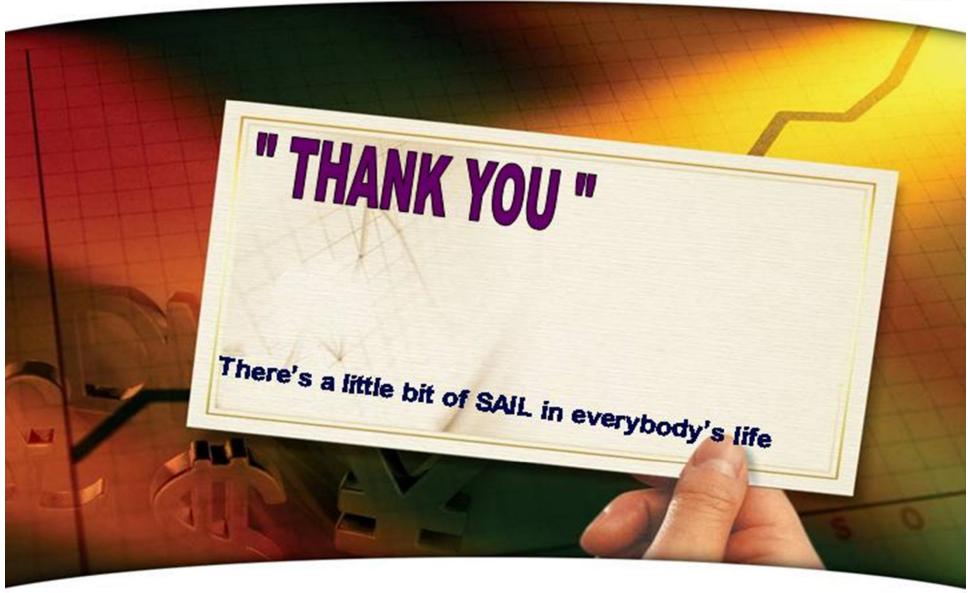
Chemical composition	Properties of Developed Bricks		
Al ₂ O ₃ , %, Min	70.0		
Fe ₂ O ₃ , %, max.	2.0		
Physical properties			
P.C.E., O.C., Min.	36		
B.D., g/cc, min. (IS:1528, Part XII)	2.60		
A.P., %, max. (IS:1528, Part VIII)	16.0		
CCS, kg/cm ² , min. (IS:1528, Part IV)	700		
RUL, t _a , ⁰ C (IS:1528, Part II)	1600		
Repeat P.L.C.A.R., %, max. At 1500 ^o C/ 2hours (PLC will be done as per IS:1528, Part VI)	1 st P.L.C.A.R. : ± 0.50 2 nd P.L.C.A.R. : ± 0.30 3 rd P.L.C.A.R. : ± 0.10		
Abradability Index, Max. (B.S.1902:Section 4.6:1985)	45		
Thermal Shock Res., Cycles, Min. (1000°C, By Air Quenching)	50		

Plant Trial

Trial bricks after installation

Preheating zone hearth lined with developed bricks

Conclusions


Refractory lining of reheating furnace hearth has to withstand very high abrasion, thermal shock and high vibration at high temperature.

➤ 70% Al₂O₃ containing high alumina brick was developed. This brick has high refractoriness, high abrasion resistance, high volume stability and thermal shock resistance.

> Trial bricks were installed in preheating zone hearth and performance is satisfactory.

> These developed bricks may reduce the cost of hearth refractory and may also use for other areas with similar operating condition.

