

Presenter Name: Soumen Jana

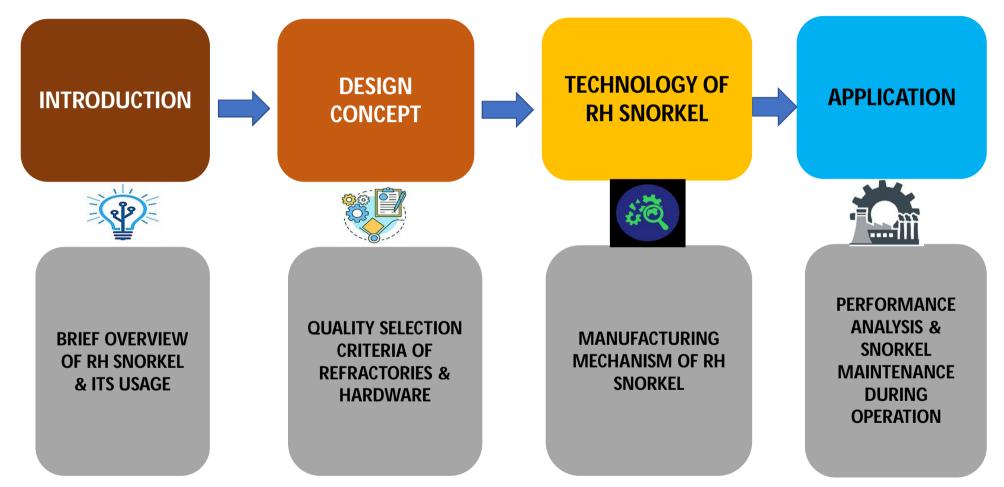
Paper name: Design of the State-of-Art Technology of RH Snorkel and its Performance

	PRESENT AFFILIATION	TRL KROSAKI REFRACTORIES LTD.
	AREAS OF INTEREST	Machine learning & Automation
	Education	B.Sc (Chemistry) . B.Tech(Chemical)
Experience	• 12 years experience on Proces	ss engineering, Quality control & Production Planning.
Projects:	 Design of Flash Drum. Project on COAL BED METHAN 	JE.
Publication/ Patent	NA	
		TRLIGROSAKI

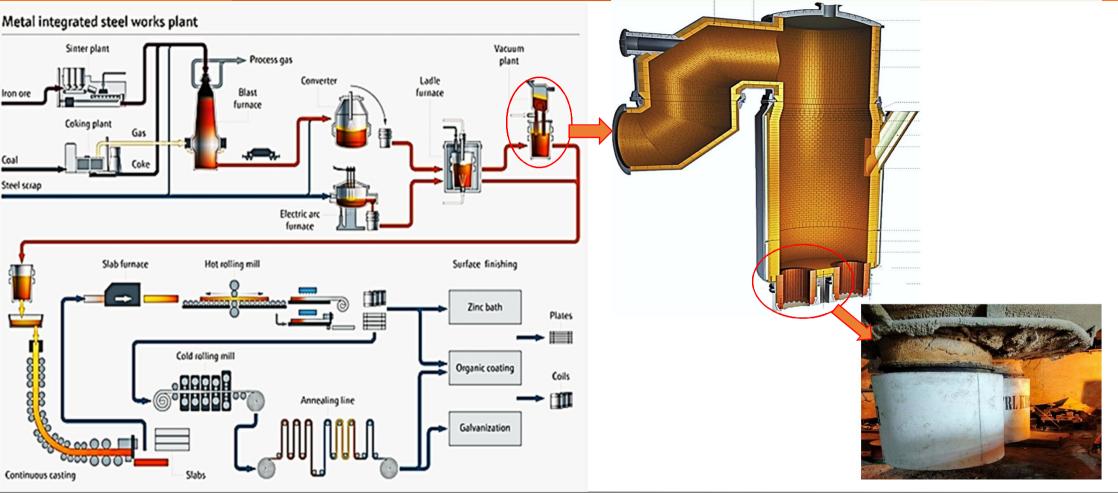
Design of the State-of-Art Technology of RH Snorkel and its Performance

SOUMEN JANA, S. SATPATHY, A. K. SAMANTA, H. NAGATA, S. SENGUPTA, P. B. PANDA

TRL Krosaki Refractories Limited, Belpahar (INDIA)


Presented by: Mr. Soumen Jana

CONTENTS

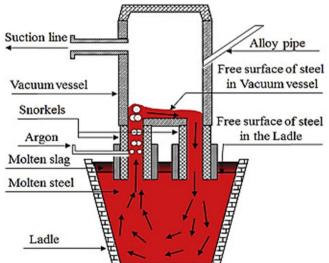


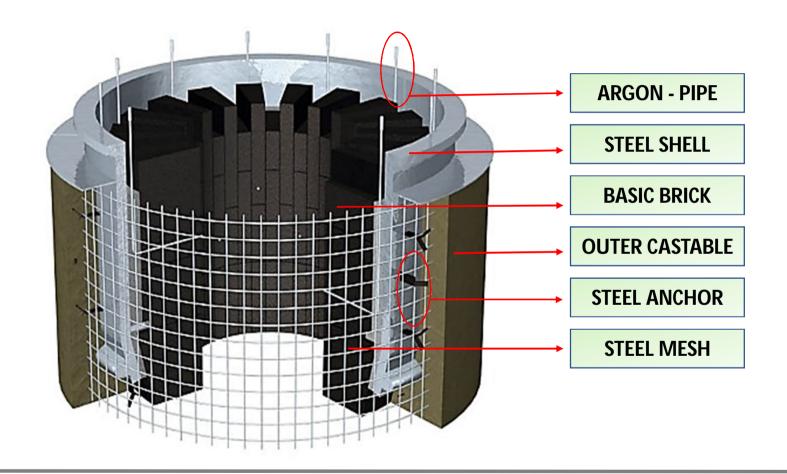
INTRODUCTION

RH- DEGASSING TECHNOLOGY

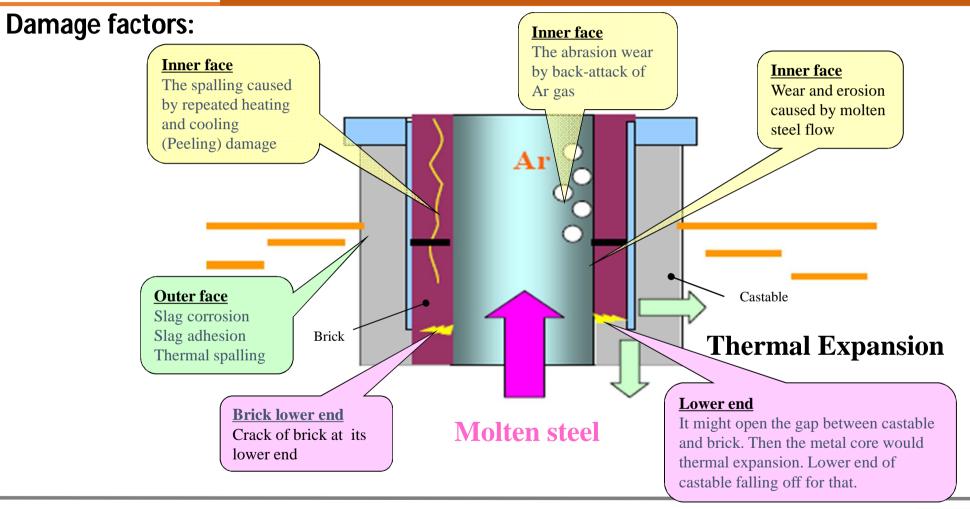
- ❖ RH (Ruhrstahl-Herraeus) De-gasser is used for manufacturing of auto-grade and higher-grade steels and the process involves decarburization and degassing.
- ❖ In this De-gassing process, RH Snorkel, which is a complex refractory assembly, inner lined with bricks and outer lined with castables over a cylindrical steel core shell is used.
- ❖ At the time of De-gassing, Steel is raised in one leg (inlet) and again it falls back into the ladle through the second leg(outlet). Argon gas is injected through the inlet snorkel to increase the molten steel velocity of steel.
- ❖ Removal of Hydrogen, Oxygen & Nitrogen gases dissolved in steel along with Decarburization raises the steel purity thereby improving its mechanical properties.

RH OPERATION PROCESS




- 1. Steel Ladle is placed under the De-gassing Unit
- 2. Snorkel is dipped into the steel & argon gas is circulated
- 3. Snorkel is removed from steel ladle after checking steel chemistry
- Repairing and thickness build up with Gunning refractory
- Ready for next heat

ROSAKI COMPOSITE STRUCTURE OF RH-SNORKEL



PERFORMANCE MONITORING PARAMETERS

QUALITY SELECTION CRITERIA

- → VOLUME STABILITY
- → HOT MODULUS OF RUPTURE
- → THERMAL SHOCK RESISTANCE
- → HIGH RESISTANCE TO IRON OXIDE
- → NO CARBON PICKUP

- → VOLUME STABILITY
- → SPALLING RESISTANCE
- → SLAG CORROSION
- → THERMAL SHOCK RESISTANCE

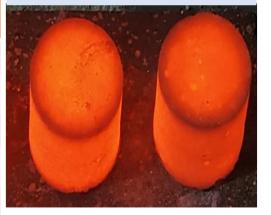
- → HIGH TENSILE STRENGTH
- → OPTIMUM YIELD STRENGTH
- → LEAST STRUCTURAL DEFORMATION DURING HEAT LOAD
- → PROPER DIMENSION

REFRACTORY QUALITY SELECTION

- DBMC
- Mag-Carbon

- Alumina
 - -Spinel
- Self flow

- •IS-2062
- IS-2002
- IS-304


DBMC BRICK PROPERTIES

- > Direct Bonded Mag-Chrome bricks are lined inside Snorkel leg
- ➤ Bricks are manufactured in high-capacity Hydraulic Presses and fired in High temperature kilns (>1800°C) with an optimum firing cycle
- > Statistical Quality Control and Analysis

Parameters	Typical Values
MgO (%)	56.7
Cr ₂ O ₃ (%)	25.2
Apparent Porosity (%)	15.2
Bulk Density (gm/cc)	3.31
Cold Crushing Strength (MPa)	75.4
HMOR (MPa) at 1500°C	8.2

Spalling Resistance

950°C to Air, no cracks are observed up to 30 cycle

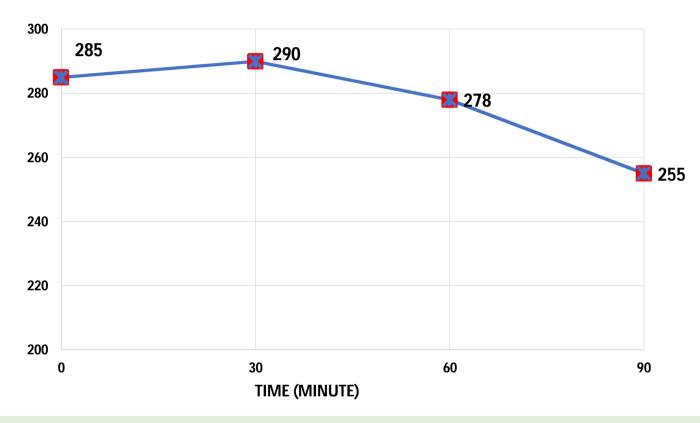
Slag Corrosion

High slag corrosion resistance

CASTABLE PROPERTIES

- **□** Excellent Slag Corrosion Resistance
- ☐ High Mechanical Strength
- □ Volume stability at application temperature
- ☐ Good Thermal Shock Resistance
- ☐ Minimal tendency for crack formation during application
- ☐ Limited infiltration of slag at high temperature

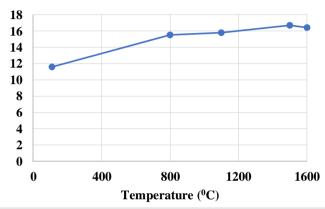
CASTABLE FLOWABILITY

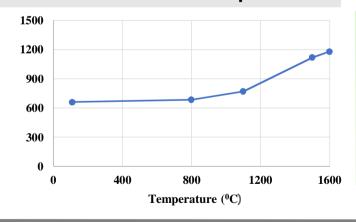


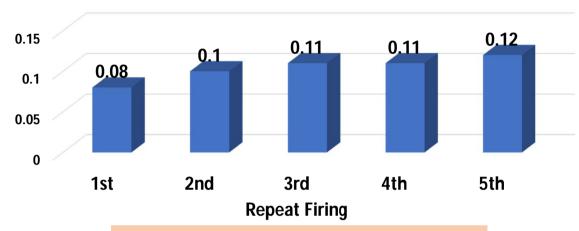
Free Flow @243 mm

Tab Flow @272 mm

Free Flow Behaviour of Alumina-Spinel Castable is attributed to proper grain size distribution in the matrix

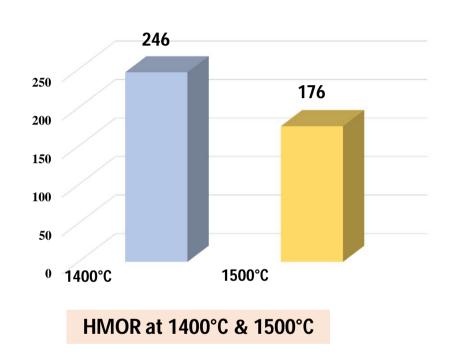



CASTABLE PROPERTIES



Variation of Porosity with Temperature

Variation of CCS with Temperature


Repeat PLC measured at 1600°C

- **☐** Decrease in AP from 1500°C to 1600°C, due to sintering of castable.
- ☐ CA and CA₂ phases help in strength development after drying and firing.
- Better Volume Stability helps to prevent crack formation as well as propagation

CASTABLE PROPERTIES

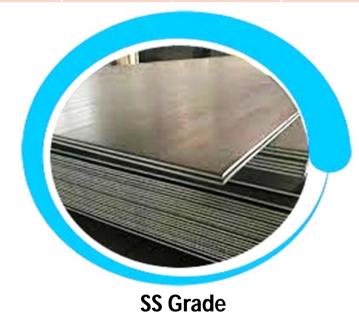
Normal castable at 26th cycle

Special castable at 64th cycle

Spalling Test at 1300°C

☐ Better Thermal Spalling Resistance & High HMOR at higher temperatures support structural stability during operation

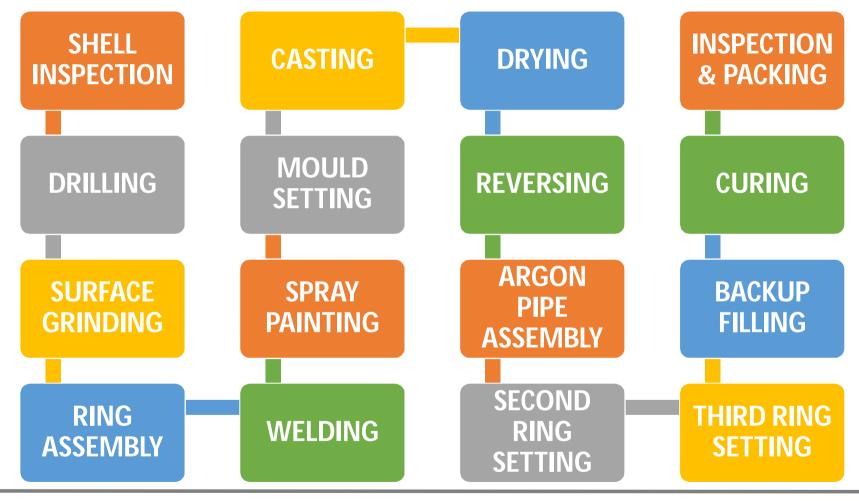
HARDWARE PROPERTIES



	Ultimate Strength (Mpa)	Flexural Rigidity (%)	Bending Test	C (%)	Mn (%)	P (%)	S(%)	Si(%)	(CE), Max
283	441	29	Ok	0.17	1.05	0.016	0.013	0.191	0.345

MS Grade

MANUFACTURING FACILITIES AT TRL KROSAKI



Activity Facility		Features	
Surface Grinding	Automatic Grinders	Highly Sophisticated & Automated machine capable of grinding the surface at required dimensions precisely	
Drilling	Drilling Machine	Automated machine with high accuracy drill bits	
Mixing	Mixer	Specially designed automated mixer machine for homogenous mixing.	
Curing	Furna ce	Automated furnace having high accuracy of temperature profile	
Flow rate measurement	Rotameter	Customized Rotameter for measurement of argon pipe flow	

MANUFACTURING PROCESS FLOW

RING ASSEMBLY MAKING

- Surface Grinding of individual bricks at micron level in automated grinders
- ➤ Zero Gaps between bricks ensures no metal penetration during usage
- Interlocking of bricks without mortar
- ➤ Zig-Zag structure assembly enhances high structural strength

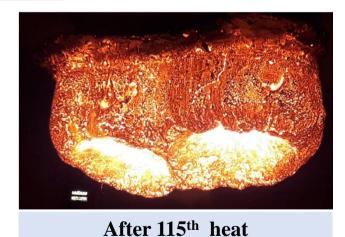
FINAL INSPECTION

FLOW MEASUREMENT

SURFACE FINISHING

PERFORMANCE DATA

Performance data of Snorkel manufactured in TRL Krosaki at different Integrated Steel Plants


Parameters	Vacuum Treatment Time (Min)	Avg. Life (Heats)	
Plant- A	33	65	
Plant - B	17	103	
Plant - C	25	117	

After 1st heat

After 31st heat

MAINTENANCE REQUIREMENTS

Damage factors: Countermeasures

Suggestion to maintain Inner face Inner face Wear and erosion The spalling caused proper sequence caused by molten by repeated heating Good quality Refractory steel flow and cooling (Peeling) damage Suggestion to slow down Inner face lift gas flow rate The abrasion wear Good quality Refractory by back-attack of Ar gas Suggestion to Proper **Outer face** gunning practice Slag corrosion **Good quality Refractory** Slag adhesion Thermal spalling Lower end It might open the gap between **Brick lower end** castable and brick. Then the metal core Crack of brick at its Good quality Refractory would thermal expansion. Lower end lower end of castable falling off for that.

CONCLUSION

- ❖ Faster operations and the ability to perform Gas Removal, Decarburization, Desulphurization and alloy addition with precise composition control makes RH degassers superior to other metallurgical equipment like the vacuum arc degassers.
- ❖ Proper selection of bricks, castable and manufacturing of snorkel assembly is vital for performance of snorkel refractory due to the abrasion caused by the high circulation rate of treated molten steel, thermal and structural spalling by the violent temperature changes, high corrosion by the Fe-oxides containing siliceous slag and CaF₂-riched desulfurization powders attack.
- ❖ TRL Krosaki is well equipped with superior quality DBMC brick manufacturing press and kilns, high intensity monolithic mixers and state-of-the-art technology of RH Snorkel manufacturing.

THANK YOU

