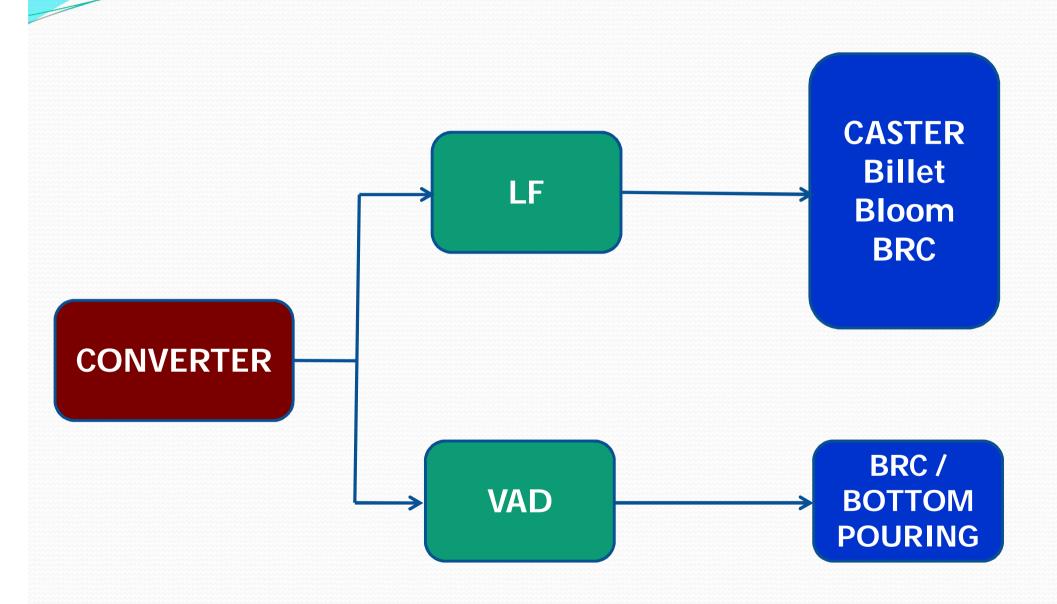
Presenter Name: SANDIPAN SEN Paper name: AN OVERVIEW OF STEEL LADLE AT DURGAPUR STEEL PLANT

	PRESENT AFFILIATION	Senior Manager, Refractory Department, SAIL – DSP				
E	AREAS OF INTEREST Refractory characterisation					
	Education	B. Tech. in Ceramic Technology from Government College of Engineering and Ceramic Technology, Kolkata				
Experience	• ESSAR Steel Limited (June'2008 – August'2010)					
	 Experience in 150 Ton DC EAF, Steel Ladle, Tundish, RH Degasser at SMS- 1. 					
	Central Glass & Ceramic Research Institute (March'2011 – March'2012)					
	 Experience in development and characterization of high density, high strength, corrosion registrant Al2O3-Cr2O3 refractory, effect of TiO2 					
	• Steel Authority of India Limited – DSP (April'2012 – till date)					
	 Experience in HM Mixer, 130 Ton Converter, Steel ladle, Tundish, VAD unit, Annular Shaft Kiln (NLCP), Dual Shaft Kiln (NDK) Refractory Procurement, Inspection, Job contract, Audit, MIS 					
Projects:	• Full relining of NLCP Kilns in DSP					
	Introduction of Dolomite Refractory in DSP					
Publication/ Patent	Densification behaviour and properties of alumina-chrome ceramics:					
	Effect of TiO2 (Ceramic International, V-39, I-1, 2013; ISSN: 0272-8842)					
	 Introduction of Dolomite Refractory in Steel Ladle Lining (Strides – DSP, V-5, April'20) 					

AN OVERVIEW OF STEEL LADLE AT DURGAPUR STEEL PLANT

Presented by

Niral Topno (SMS) Sandipan Sen (Refractory)


Facilities available in BOF shop

- Mixer : 2 no. of 1300 T
- Converter : 3 no. of 110/130 T with Bottom purging
- Ladle : 36 in steel/VAD route
- LF : 3 no. of 130 T
- VAD : 1 no. of 130 T
- Caster : 2 no. of Billet caster
 1 no. of Bloom Caster
 1 no. of Bloom cum Round Caster
- Annular Shaft Kiln: 3 nos. for Lime calcination (300 TPD)
- Dual Shaft Kiln : 1 no. for Dolomite calcination (300 TPD)

Process Flow Diagram

Steel Ladle lining practice

	AREA						
	WALL				BOTTOM		
PARAMETERS	METAL ZONE		SLAG ZONE				
	SAFETY	WORKING	SAFETY	WORKING	SAFETY	WORKING	
QUALITIES	70%LMC & 39%AI2O3 bricks & MCH	Mag Carbon	70%LMC & 39%Al2O3 bricks & MCH	Mag Carbon	70% LMC & MCH	MagCarbo n with AMC in impact pad	
THICKNESS(mm)	65 & 50	178	65 & 50	178	100 & 65	250	
APPROX. WEIGHT(Ton)	10	14	6	6	4	3	
<i>Approx.</i> AVG.LIFE(HEAT)	LMC: 3 campaigns Rest renewable	70-73	LMC: 3 campaigns Rest renewable	42-44	LMC: 3 campaigns Rest renewable	42-44	

Functional Refractories

Slide gate system : FLOCON 6300 Series – II

Bore Dia. 50mm

- Teeming block : 2 pcs. of 90% Al_2O_3 ULCC PCPF quality
 Height of Teeming Block: 425 mm
- Inner Nozzle : 90% Al₂O₃ ULCC PCPF quality / MgO-C quality Length of I/N: 278 mm
 - Outer nozzle : 90% Al₂O₃ ULCC PCPF quality
- Purging system : IPV

>

- Seating block : Single / 2pcs. of 90% Al_2O_3 ULCC PCPF quality
 - Height of Seating Block: 450 mm
- Type of Porous Plug : Directional Plug
- Porous plug length : 360 mm

Operational Parameters For LF

मेल SAL 500 मारसा के 39 माल भाषाया के 39 माल आज़ादी का अमृत महोत्सव

LF heat size

- : 120 T
- ✤ Converter Tapping Temp.
 : 1640° 1680° C
- ✤ Ladle temp. after tapping : 1570° 1620° C
- Ladle temp. after LF :
 For Billet : 1610° 1620° C (for 1st heat in VM tundish) 1585° – 1600° C (for sequence heat)
 For Bloom: 1615° – 1620° C (for 1st heat) 1585° – 1600° C (for sequence heat)
- Avg. treatment time : 40 mints.
- Avg. Arcing time : 20 mints
- Purging

: Continuous @ 10 - 12 bars

 Avg. No. of heats/ day through LF : 100% except VAD heat

Operational Parameters For VAD

- ✤ VAD heat size : 110T
- Ladle temp. before VAD
- Treatment time
- Arcing time
- Purging
- Vacuum during arcing
- Vacuum during deep : <5 mili bar degassing
- No. of heats/ day

: 4 heats (Avg.)

: 1600 - 1610⁰ C

: Avg. 160 mints.

: Avg. 45 mints

: 550 - 750 mili bar

: Continuous @ 10 - 12 bars

tir sall **Techno-economic parameters for Steel** Ladies 74.68 74.29 Avg. Steel 73.34 72.36 71.91 Ladle Life (Heats) Specific 6.34 6.03 6.69 6.01 5.74 Consumption (Kg/TCS) FY 18-19 FY 19-20 FY 20-21 FY 21-22 FY 22-23

Factors affecting the ladle life

• THERMO MECHANICAL WEAR AND SPALLING: Thermo-mechanical wear and

spalling is caused by stresses, generated by thermal expansion or mechanical shocks; resulting cracks in the microstructure of bricks.

• LADLE TREATMENT

Stirring/Purging: High flow rate of gases through purging plug (sometimes) causes abrasion/erosion of ladle wall.

Arcing & Purging: Any mismatch in purging rate w.r.t. arcing leads to high erosion in slag belt.

Power input: Higher arcing period resulting more erosion of bricks.

- Slag carry over. More carry over slag leads to jam formation in top ring.
- Slag composition: Lower Slag basicity (< 1.5) leads to higher erosion of

refractories. Low MgO content in slag directly affects MgO – C lining.

➤Quality of lime: Poor quality of lime (reactivity < 280) ultimately affecting the ladle life.</p>

➢ Process time: Holding of liquid steel at high temperature under vacuum increases refractory erosion rate.

• **PREMATURE TOP RING FAILURE**: During cleaning of top skull by anchor hook,

brick joints become loose and get dislodged from the top.

- **OVER HEAT SIZE**: Damages the free board lining and lead to premature failure of ladles.
- **<u>HANDLING OF BRICKS</u>**: Corner breakage, due to mishandling, leads to joint exposure, through which metal penetration may occur.
- **PREHEATING AND HANDLING OF GREEN LADLES**: Green ladles must be

handled with proper care to avoid any dislodging of bricks with proper preheating.

FY	FeO	CaO	SiO2	AI2O3	MnO	MgO	CaO/SiO2
2018-19	1.95	51.41	26.59	6.11	2.44	8.63	1.93
2019-20	4.65	49.99	27.47	3.95	2.49	8.47	1.82
2020-21	1.99	50.79	28.71	6.70	2.09	6.37	1.77
2021-22	3.45	50.04	26.91	4.38	3.21	9.38	1.86
2022-23 (till Aug'22)	2.51	50.91	26.93	3.97	3.55	9.68	1.89

- ✓ Replacement of I/N in hot condition at a life of 20 25 heats.
- ✓ Replacement of ladle top shell in periodic manner.
- ✓ Stabilization of double porous plug resulting in uniform purging and less localized erosion in slag zone lining.
- ✓ Use of slag modifier in ladle.
- ✓ Quality modification of free board lining from MCH quality to MCB quality
- ✓ Stabilization of Dolomite ladle sets as alternate material of MgO-C ladle sets.

 To achieve Avg. Steel Ladle life of 80 heats (short term goal), and to increase the same to 100 heats (long term goal)

 ✓ Introduction and stabilization of Steel Ladle Sets on Total Ladle Management (TLM) basis.

Thank you