

Effect of thermal treatment on phase and microstructural evolution of magnesium borate (Mg₂B₂O₅) nanorod whiskers prepared via hydrothermal cum reaction sintering process

Under the Supervision of-

Dr. Manas Ranjan Majhi (Supervisor) Ceramic Engineering Department

Presented By-

Vaibhav Singh Research Scholar Ceramic Engineering department IIT (BHU) VARANASI

Table of Contents

Introduction ► Applications Experimental Proceeding Results And Discussion Microstructural Testing Ι. Physical and Mechanical Testing **II**. Conclusion References

Introduction

- Whiskers are one dimensional, long, nano-structure materials which are in the form of nanowires, nanorods, nanobelts and nanotubes.
- Now a day's ceramic whisker evolved as a potential reinforcement in the fabrication of metal, ceramic and polymerbased composite because of their wide range of fitting properties.
- Ceramic whisker in particular magnesium borate not only improves mechanical and microstructural properties but also improves thermal and antiwear properties of composites.
- Mg₂B₂O₅ whisker has very attractive features as a reinforcement in composites.

Applications

- ▶ It is used as a thermo-luminescent phosphor.
- Luminescent material for cathode ray tube screens.
- Catalyst reinforcing material for plastics.
- Excellent resistance for corrosion-erosion in basic oxygen steel making.
- Good thermal shock resistant in fused cast refractories.
- Used as a reinforcement in composites.

Experimental Proceeding

Synthesis Of Magnesium Borate (Mg₂B₂O₅) Whisker via hydrothermal process from MgO and H₃BO₃

Synthesis of Mg2B2O5 Whisker via Hydrothermal route

STARTING MATERIAL

The primary raw material used for the synthesis of Magnesium Borate (Mg2B2O5) whisker is Mg0 and Boric Acid.

SEIVING

This is done by passing the raw material from sieve shaker of 45 micron size separately.

Direct Mixing in magnetic stirrer

- First of all we have to take 50 gm sample of MgO and Boric acid in a beaker. Add 300 ml of distilled water in it.
- Then the beaker is placed on a magnetic stirrer for stirring the solution for 2 hr at 80°C.
- ► After stirring at 80 °C, the solution is dried into oven at 110 °C for 12 hrs.

BINDER ADDITION

The 5% w/w PVA binder was slowly added after mixing in auger mortar pestle.

PRESSING AND PELLET FORMATION

- Pressing is done on the hydraulic pressing machine for pellet formation.
- In this the powder mixtures were uniaxially compacted into rectangular and circular pellet specimen in a high carbon chrome die.
- Which were further compacted by cold isostatic pressing at 10 Tons on hydraulic pressing machine.

SINTERING

The pellets were sintered in an oxide electric furnace from 700 to 1200°C sintering temperature, with 5°C/min heating rate and soaking for 4 hours.

Pellet after sintering at 1200°

Oxide Electric Furnace

Results and Discussion

TGA Analysis

XRD analysis of synthesized magnesium borate

HRSEM of synthesized magnesium borate

TEM

(a) TEM image shows $Mg_2B_2O_5$ nanorod structure; (b) magnified TEM and corresponding SAED pattern (inset) of $Mg_2B_2O_5$ nanorod at 1200 °C; (c) HRTEM; (d) calculation of d-spacing using IFFT (inset) in Gatan software

Physical properties of sintered sample

Processing temperatur e (°C)	Apparent Porosity (%)	Bulk density (g cc ⁻¹)
700	16.54	1.86
800	14.73	1.93
900	13.82	1.97
1000	7.97	2.18
1100	6.82	2.33
1200	7.25	2.28

Mechanical Testing Bending strength at room temperature (CMOR) and at 800°C (HMOR)

Processing temperature (°C)	Bending strength at ambient condition (CMOR) (MPa)	Bending strength at 800 °C (HMOR) (MPa)
700	9 ± 2	6 ± 2
800	13 ± 2	9 ± 2
900	23 ± 2	16 ± 2
1000	38 ± 2	28 ± 2
1100	53 ± 2	42 ± 2
1200	46 ± 2	35 ± 2

Compression and Hardness Test

Processing temperature (°C)	Compressive Strength (MPa)	Vickers Hardness (HV)
700	78 ± 5	28
800	86 ± 5	34
900	92 ± 5	42
1000	106 ± 5	53
1100	118 ± 5	64
1200	112 ± 5	58

Conclusion

- High purity single crystalline Mg₂B₂O₅ nanorod whiskers were successfully synthesized via hydrothermal cum reaction sintering process.
- The structure of Mg₂B₂O₅ changes from monoclinic to orthorhombic followed by triclinic when the sintering temperature increases from 700 to 1200°C, as analyzed by XRD results.
- SEM and TEM images confirm the formation of circular cross-section nanorod like ceramic whisker having average diameter varies between 47 to 130 nm and average length varies between 63 to 715 nm at sintering temperature ranging from 700 to 1200°C.
- The SAED pattern reveals that these nanorods are single crystals and HRTEM indicates the formation of triclinic phase of Mg₂B₂O₅ nanorods at 1200°C sintering temperature.
- Physical and mechanical properties of synthesized Mg₂B₂O₅ was investigated between 700 to 1200°C sintering temperature. It was found that sintering temperature of 1100°C as an optimum temperature for the synthesis of nanorod whiskers.

References

- J. Qu, Q. Li, C. Luo, J. Cheng, X. Hou, Characterization of flake boron nitride prepared from the low temperature combustion synthesized precursor and its application for dye adsorption, Coatings. 8 (2018). <u>https://doi.org/10.3390/coatings8060214</u>.
- Y. Yao, B. Gao, J. Chen, L. Yang, Engineered biochar reclaiming phosphate from aqueous solutions: Mechanisms and potential application as a slow-release fertilizer, Environ. Sci. Technol. 47 (2013) 8700-8708. <u>https://doi.org/10.1021/es4012977</u>.
- X. Zhu, D. Wu, W. Wang, F. Tan, P.K. Wong, X. Wang, X. Qiu, X. Qiao, Highly effective antibacterial activity and synergistic effect of Ag-MgO nanocomposite against Escherichia coli, J. Alloys Compd. 684 (2016) 282–290.
- E. Sadeghi, N.S. Peighambardoust, M. Khatamian, U. Unal, U. Aydemir, Metal doped layered MgB₂ nanoparticles as novel electrocatalysts for water splitting, Sci. Rep. 11 (2021). <u>https://doi.org/10.1038/s41598-021-83066-7</u>.
- L. Souqui, J. Palisaitis, H. Högberg, H. Pedersen, Plasma CVD of B-C-N thin films using triethylboron in argon-nitrogen plasma, J. Mater. Chem. C. 8 (2020) 4112-4123. <u>https://doi.org/10.1039/d0tc00616e</u>.

- X. Guo, L. Rao, P. Wang, L. Zhang, Y. Wang, Synthesis of porous boron-doped carbon nitride: Adsorption capacity and photo-regeneration properties, Int. J. Environ. Res. Public Health. 16 (2019). <u>https://doi.org/10.3390/ijerph16040581</u>.
- B. Liu, W. Wei, Y. Gan, C. Duan, H. Cui, Preparation, mechanical properties and microstructure of TiB₂ based ceramic cutting tool material toughened by TiC whisker, Int. J. Refract. Met. Hard Mater. 93 (2020) 105372. https://doi.org/10.1016/j.ijrmhm.2020.105372.
- G. Ma, Y. Ding, P. Jin, Effect of ball milling on microstructure and mechanical properties of Mg₂B₂O₅w/6061Al matrix composites, Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met. Mater. Eng. 45 (2016) 1430-1436. <u>https://doi.org/10.1016/s1875-5372(16)30126-6</u>.
- L. Kumari, W.Z. Li, S. Kulkarni, K.H. Wu, W. Chen, C. Wang, C.H. Vannoy, R.M. Leblanc, Effect of Surfactants on the Structure and Morphology of Magnesium Borate Hydroxide Nanowhiskers Synthesized by Hydrothermal Route, Nanoscale Res. Lett. 5 (2010) 149-157. <u>https://doi.org/10.1007/s11671-009-9457-9</u>.
- T.R. Paul, M.K. Mondal, M. Mallik, Densification behavior of ZrB₂-MoSi₂-SiCw composite processed by multi stage spark plasma sintering, Ceram. Int. 47 (2021) 31948-31972. <u>https://doi.org/10.1016/j.ceramint.2021.08.081</u>.

THANK YOU