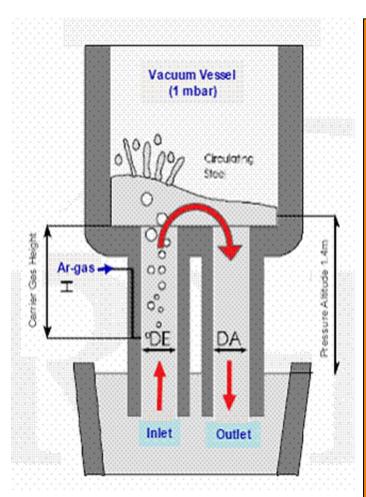


STUDY OF RH REFRACTORIES AND OPERATION PARAMETERS


Presented by: R K Dharua,GM,SMS-II(O)
Sampad Mishra,AGM,Refractories

RH-Degasser

RH i.e. Ruhrstahl Heraeus named on The steel works in Ruhrstahl Germany, where the first RH-D installed & Heraeus was the main supplier of vacuum pump for the first RH- Degasser.

RH Process

- RH snorkels are immersed in to the liquid steel up to a certain standard level. This initiates vacuum creation in the vessel.
- Molten steel is sucked upward through inlet snorkels while some level of vacuum force is maintained.
- Argon purging begins from inlet snorkel allows metal flow upward that snorkel and at the same time some metal flow downwards from the outlet snorkel. This continuous purging provides circulation of metal from ladle to both the snorkel and back to the ladle.
- Due to this circulation, the metal comes in contact with vacuum and gases are removed from the steel bath.

Lower vessel Snorkels Ladle Vacmetal Recirculation Degasser

- Two snorkels/legs
- Ar injection in up leg to pump metal in RH unit(~ 150Nm³/Hr)
- Metal comes back into ladle through down leg
- Circulation rate(100-200T/min)
 depends on snorkel dia(500-750mm) &
 Ar flow rate(2000-3000Nlpm)
- No. of circulation varies 20-40 depending on process requirements

RH OPERATION

Types of RH-Degasser

- **RH-O**: O₂ is blown on circulating molten steel in vacuum chamber from its top with water cooling O₂ lance for refining low carbon stainless steel
- **RH-OB**: O₂ blowing decarburizing and Al-adding temperature rising of circulating flowing molten steel are achieved by Ar cooling O₂ blowing nozzle installed in tuyere bricks lined in side wall of lower vessel

Types of RH-Degasser

- RH-TOB: O₂ blowing, vacuum decarburizing, and CO secondary combustion temperature rising of circulating flowing molten steel are achieved by the top O₂ blowing lance for producing ultra low carbon
- RH-IJ: Ar and desulphurization powder are injected from the molten steel below the RH up-leg through the injection lance inserting

Types of RH-Degasser

- **RH-PB**: Desulphurization powder or other powders are blown into flowing molten steel from O₂ blowing hole in side wall of lower vessel
- RH-KPB: Desulphurization powder and refining powder are blown into flowing molten steel from the top of vacuum chamber
- **RH-MFB**: Multifunction burner developed by Nippon Steel. Natural gas is blown during vacuum blowing refining. Combustion of gas raise steel temp. and cause less skull in vacuum chamber

RH DEGASSING PROCESS

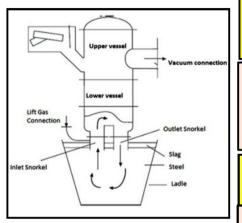


Fig: - RH Degasser Circulation

Two snorkels are immersed into liquid steel ladle.

Due to this circulation, liquid metal comes in contact with vacuum and gases are removed from the steel bath.

Molten steel is sucked upwards into the vessel due to vacuum

Argon gas is purged from inlet snorkel and liquid steel moved up through inlet snorkel.

Parameters, Unit	Value
Capacity (t)	165
Up-leg snorkel diameter(mm)	500
Down-leg snorkel diameter(mm)	500
Lift gas flow rate (Nm3/hr)	115
Oxygen Blowing method in MFB	Top blowing
Blowing O2 flow rate (Nm3/hr)	1650
Heating O2 flow rate (Nm3/hr)	420
Heating propane flow rate	70
(Nm3/hr)	
Blowing height(mm)	4000
Burner heating rate (deg C/min)	20-50
Vessel stroke length(mm)	2700

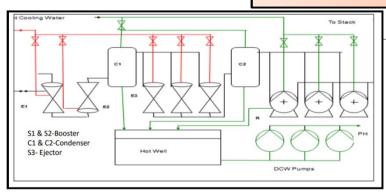


Fig: - RH Operation system

- 1.Steam inlet pressure- 13 bar
- 2.Pressure at water ring pumps-400 mbar
- 3. Pressure at Ejectors- 80mbar
- 4.Ultimate pressure- <5 mbar

Vacuum system of RH has:-

- 3 water pumps
- 3 ejectors
- 2 condensers
- 2 boosters

Recent technology-Water ring pumps are not installed and ejectors are selfsufficient

Operating Conditions of RH refining abroad

- •Refining temperature:1560-1650°C
- Vacuum degree max. : 66 Pa (0.5 Tor)
- Longest vacuum treating/heat: 40 min.
- •RH degasser capacity: 265 ton
- Steel circulating quantity: 200t/min.
- Slag layer thickness in ladle: 50-100 mm
- Basicity of slag: >2.0

Operational Control of RH

- Initial temperature
- Slag conditions
 - * Actual Treatment Time: 10-45 minutes
 - * Ultra low C (30ppm): 30 minutes
 - * Light treatment for low H (6ppm to 1ppm) : 10 minutes

Handling Time: 10-12 minutes

- Upper Vessel
 Free space for steel erosion & slag corrosion
 Refractories used:
- -Ordinary magnesite-chrome
- -Magnesia spinel bricks is also used
- -MgO-C not used as its self consumption
 reaction in vacuum[MgO+C Mg(g)+CO(g)]
- -Al₂O₃-MgO.Al₂O₃ castable lining

Lower Vessel, Bottom & Throat Erosion for high speed circular flow of molten steel Refractories used:

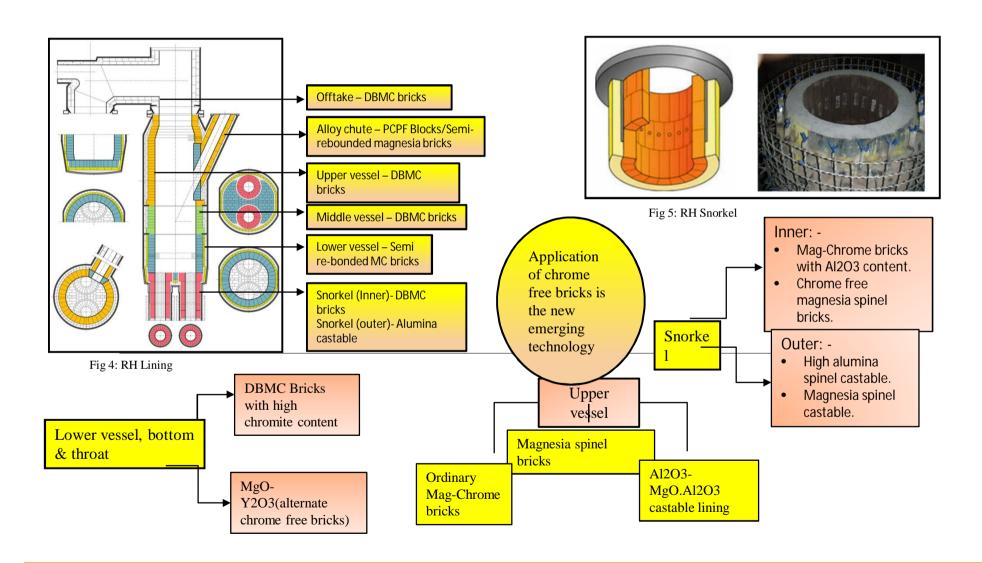
- Direct bonded mag-chrome bricks with high Cr₂O₃ in the matrix
- -Fused grain rebonded mag-chrome bricks with high Cr₂O₃ in the matrix
- New generation mag- chrome bricks with lower porosity and permeability

Lower Vessel

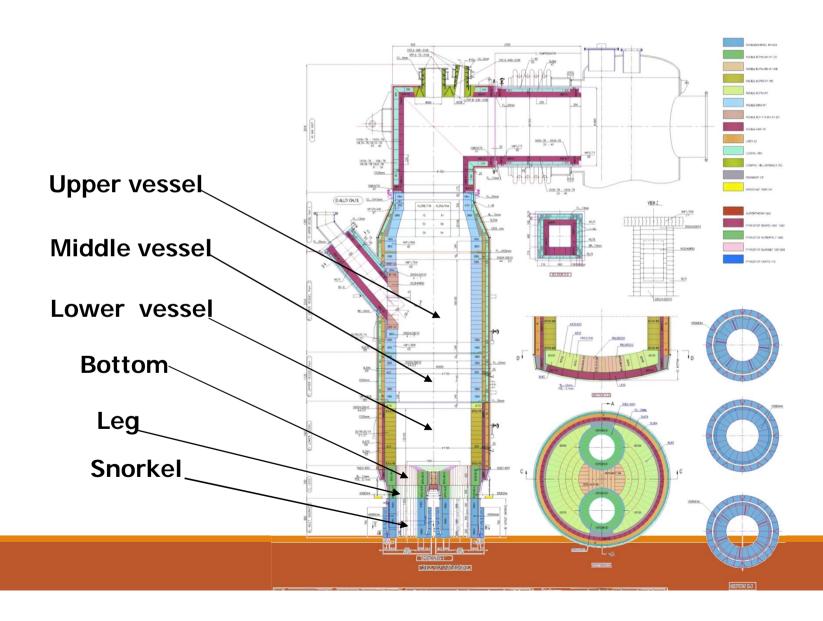
Future trend of Refractories:

- -Chrome free bricks (MgO-Al₂O₃-ZrO₂)
- -MgO- Y_2O_3 bricks(new phase $Ca_4Y_6O(SiO_4)_6$ with high melting point found near hot face as a result of $CaO\&SiO_2$ in $Slag\&Y_2O_3$ in brick
- Low carbon containing MgO-C bricks (Fused MgO,Fine graphite2-3%with high specific surface area5m².g⁻¹, Si powder)

- Snorkel(Inner lining)
- Errosin by high circulation, Corrosion by >2 basicity
- slag,Thermal&structural
- Refractories used:
- -Magnesite-chrome bricks with less FeO-& more Al₂O₃
- -Chrome free magnesia spinel bricks
- Low carbon containing MgO-C/MgO-CaO-C bricks if refining is not ultra low C steel


Snorkel(Outer lining)

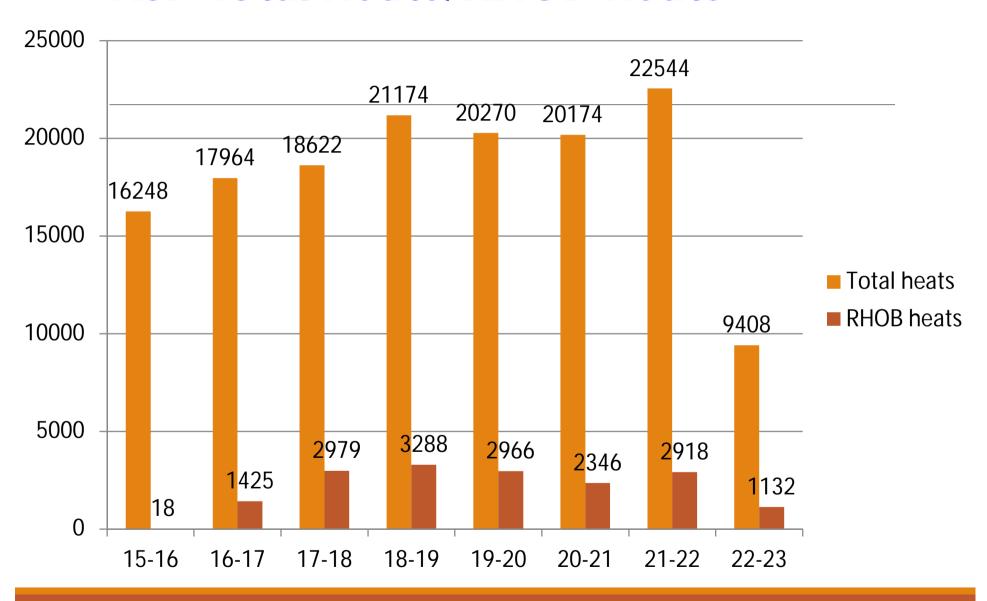
Directly contact with basic slag thus requires corrosion resistance

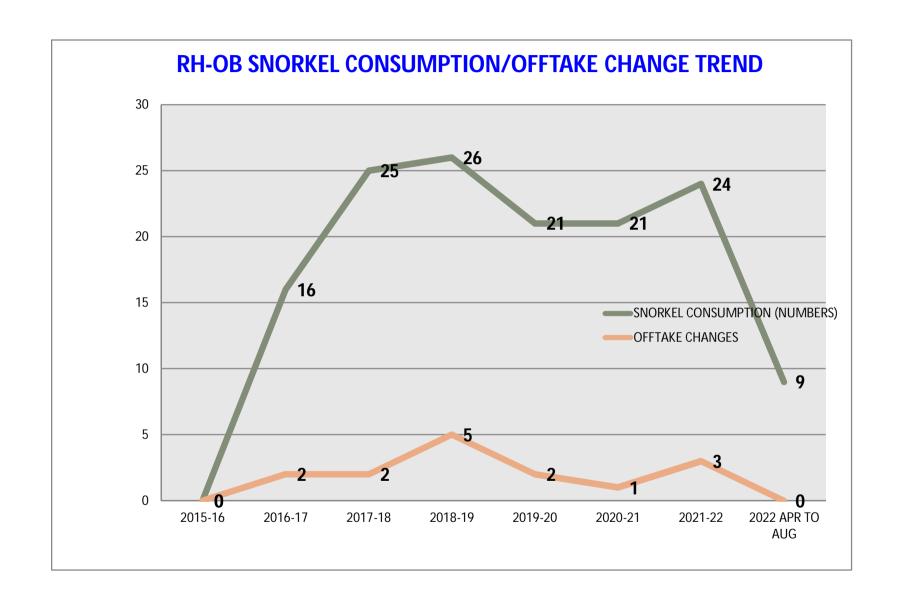

Refractories used:

- -Calcium aluminate cement bonded corrundum or high Al₂O₃ spinel castable
- -Magnesia spinel castable
- Repair by Al2O3-MgO/MgO-Cr₂O₃ based injection material

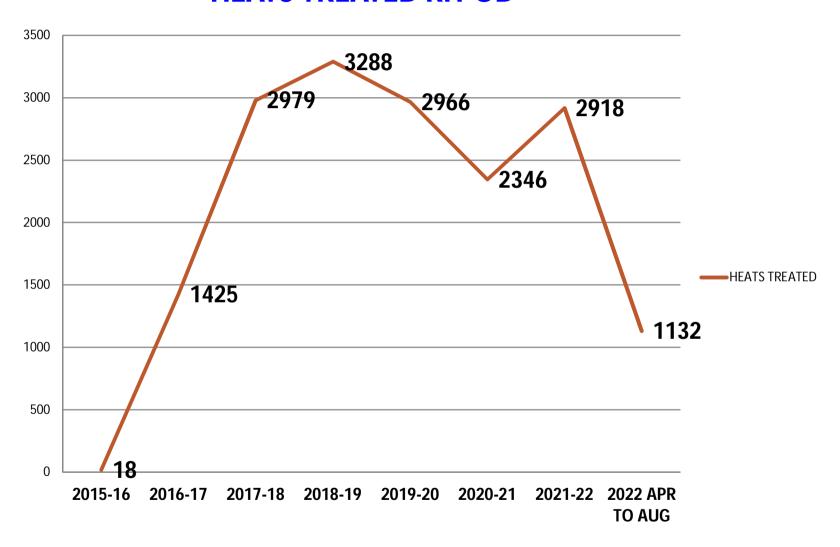
RH REFRACTORIES

RH Degasser at RSP

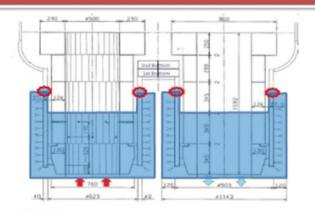

RH refractories at RSP


Properties	Upper vessel	Lower vessel, Bottom & Leg
MgO(%), min.	55	60
Cr ₂ O ₃ (%), min.	18	20
Fe ₂ O ₃ (%), max.	20	10
SiO ₂ (%), max	-	1.5
B.D(g/cm ³), min.	3.25	3.0
A.P(%),max.	17	16
RUL, °C min.	-	1680
C.C.S(kg/cm ²),min.	550	550

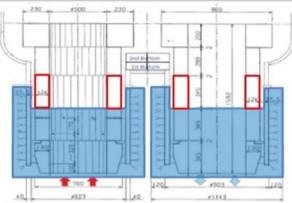
Performance of RH at RSP


Description	Unit	RH-OB
Avg. Life of Snorkel	Heats	120
Life of Leg/ Bottom/ Lower Vessel	Heats	120
Life of Middle Vessel	Heats	6*120
Life of Upper Vessel	Years	2
Heats/day/RH	Nos	25-26
Process Time	Min.	~ 20
Refr. Materials	-	Direct Bonded Mag. Chrome

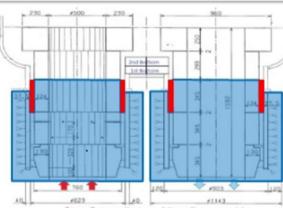
RSP Total heats/RHOB heats

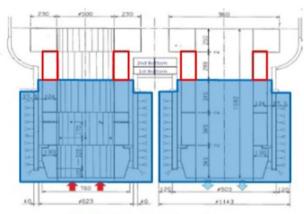


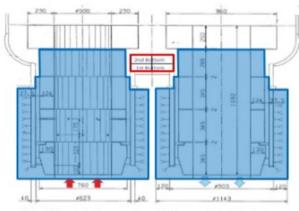
HEATS TREATED RH-OB



Installation of RH at RSP

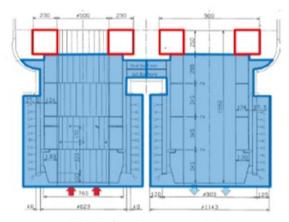

(RH Snorkel & Bottom) Installation process & checklist


Step 1: Installation of Snorkel Up Leg & Down Leg By Welding Process

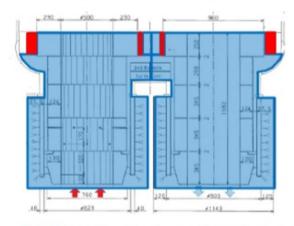

Step 2: Installation of 3rd Ring Bricks, max 2 mm Mortar. Gap between shell - 20-35 mm. (if not-Report)

Step 3: Installation of Free flow castable

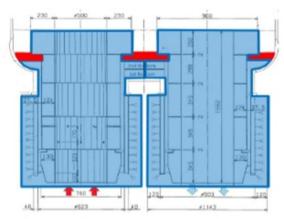
Step 4: 4th Ring Bricks installation

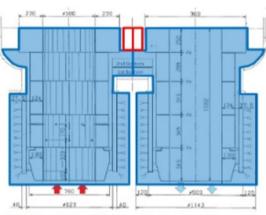


Step 5: Installation of 1st and 2nd layer of DBMC Safety Bricks



Step 6: Installation of Free flow castable upto 2nd Bottom safety layer

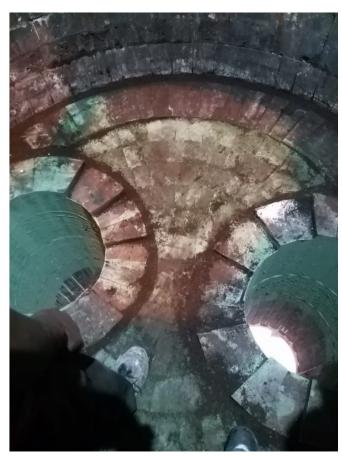

(RH Snorkel & Bottom) Installation process & checklist


Step 7: 5th Ring Bricks installation

Step 10: Installation of Free Flow castable filling the gap between
Ring Bricks –Bottom working lining & Side wall safety

Step 8: Installation of Free Flow castable Layer above 2nd safety for approx.40mm (covering 5mm of 5th ring.)

Step 9: Installation of Bottom Working Lining Surrounding the 5th ring Leg bricks Gap approx. 30-40 mm


Lower and Upper Leg Installation

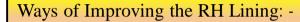
Bottom Installation

Bottom Casting and Lower vessel

Full Bottom casting, giving us good result

Patching between Lower Vessel and middle Vessel

MAINTENANCE AND WAYS OF IMPROVEMENT



Inner Gunning Material -

Al2O3: 73% MgO: 15% SiO2: 7.3%

Outer Gunning Material –

MgO: 87% SiO2: 5%

Selecting one kind of steel refining in a campaign

Operating temperature not >1650°C

Inner temperature not< 900°C during non-operating.

Regular snorkel maintenance

Vacuum treatment time not >40min

Conclusions

- Under modernization of all steel plants RH and RH-OB will be an essential vacuum degassing units for production of ultra low C(< 30ppm),extra low H(<1ppm),extra low N(<30ppm)& special quality steels</p>
- Selection and application of suitable bricks particularly in lower vessel and snorkel inner along with proper repair in snorkel outer are the deciding factors for increasing RH degasser life

